A developing country perspective on vaccine-associated paralytic poliomyelitis
T. Jacob John

Abstract When the Expanded Programme on Immunization was established and oral poliovirus vaccine (OPV) was introduced for developing countries to use exclusively, national leaders of public health had no opportunity to make an informed choice between OPV and the inactivated poliovirus vaccine (IPV). Today, as progress is made towards the goal of global eradication of poliomyelitis attributable to wild polioviruses, all developing countries where OPV is used face the risk of vaccine-associated paralytic poliomyelitis (VAPP). Until recently, awareness of VAPP has been poor and quantitative risk analysis scanty but it is now well known that the continued use of OPV perpetuates the risk of VAPP. Discontinuation or declining immunization coverage of OPV will increase the risk of emergence of circulating vaccine-derived polioviruses (cVDPV) that re-acquire wild virus-like properties and may cause outbreaks of polio. To eliminate the risk of cVDPV, either very high immunization coverage must be maintained as long as OPV is in use, or IPV should replace OPV. Stopping OPV without first achieving high immunization coverage with IPV is unwise on account of the possibility of emergence of cVDPV. Increasing numbers of developed nations prefer IPV and manufacturing capacities have not been scaled up, so its price remains prohibitively high and unaffordable by developing countries, where, in addition, large-scale field experience with IPV is lacking. Under these circumstances, a policy shift to increase the use of IPV in national immunization programmes in developing countries is a necessary first step; once IPV coverage reaches high levels (over 85%), the withdrawal of OPV may begin.

Keywords Poliovirus vaccine, Oral/adverse effects; Poliomyelitis/epidemiology/chemically induced; Poliovirus vaccine, Inactivated/therapeutic use/economics; Poliovirus/drug effects; Immunization programs; Developing countries (source: MeSH, NLM). Mots clés Vaccin antipoliomyélitique Sabin/effets indésirables; Poliomyélite antérieure aiguë/épidémiologie/induite chimiquement; Vaccin antipoliomyélitique inactivé/usage thérapeutique/économie; Poliovirus humain/action des produits chimiques; Programmes de vaccination; Pays en développement (source: MeSH, INSERM). Palabras clave Vacuna antipolio oral/efectos adversos; Poliomielitis/epidemiología/inducida químicamente; Vacuna antipolio de virus inactivados/uso terapéutico/economía; Poliovirus/efectos de drogas; Programas de inmunización; Países en desarrollo (fuente: DeCS, BIREME).

Introduction

“From a humanitarian perspective, eradication provides the ultimate in health equity and social justice, bringing identical and universal benefits to every person globally” (1). This article examines how identical and universal these benefits have been. Industrialized countries used either the inactivated poliovirus vaccine (IPV) or the oral poliovirus vaccine (OPV), alone or in sequence, in routine immunization, and thereby rapidly controlled or even eliminated poliomyelitis caused by wild polioviruses (2–4).

WHO advocated OPV exclusively for developing countries both in the Expanded Programme on Immunization (EPI, established in 1974) and for polio eradication (from 1988) (5). The five promised advantages of OPV were low cost; ease of administration; high vaccine efficacy for low number of doses; mucosal immunity to stop virus transmission; and vaccine-related virus spread contributing to “contact immunization” (1, 5–7). Accumulated experience and evidence question the reality or impact of some of the putative advantages of OPV (8–11). Consequently, eradication has been an uphill task in developing countries, necessitating nearly 100% OPV coverage with 10–15 doses per preschool child, given in EPI activities and through supplementary immunization campaigns (7).

The incidence of vaccine-associated paralytic poliomyelitis (VAPP) was considered low enough to qualify OPV as “one of the safest vaccines in current use” by WHO (12, 13). In the pre-EPI era, 600 000–800 000 cases of polio occurred annually, the vast majority in developing countries. Many experts accepted VAPP as a price for the greater benefit of controlling wild poliovirus
using OPV. The countries themselves, however, had no opportu-

nity to make an informed choice between vaccines. While progress

is made towards eradication, VAPP is now becoming more fre-

quent than polio attributable to wild poliovirus infection (14–16).

How many VAPP cases, if any, are acceptable in developing
countries? Will continued occurrence of VAPP jeopardize the
very success of eradication? Will options to eliminate VAPP be
affordable? These are essential questions to be solved from a
developing country perspective.

The risk and burden of VAPP in developing
countries

Clinically, VAPP is indistinguishable from polio caused by wild
poliovirus, with an identical incubation period, range of severity
and case-fatality rate (12–21). In surveillance for eradication,
poliomyelitis T. Jacob John

monitor oral infectious dose of Sabin virus (type 1) is 4 logs_{10} higher
than that of wild virus (Mahoney strain) (9, 26). When 10^{6.5}
median cell culture infectious doses of Sabin virus (type 3), ten
times higher than in OPV, were given to antibody-negative chil-
dren in India, only 76% became infected (27). Vaccine-related
polioviruses do not establish sustained circulation in the com-
munity, in contrast to wild polioviruses. Neurovirulence may
re-establish by genetic reversion (28, 29). If both neurovirulence
and transmissibility are regained, the resultant circulating vaccine-
derived poliovirus (cVDPV) becomes wild-like (30). A cVDPV
type 2 circulated for 10 years (1983–93) in Egypt, causing 32
cases of polio (31). A cVDPV type 1 circulated silently in the
Dominican Republic and Haiti from 1998 and caused an out-
break of polio (21 confirmed and 15 probable cases) from July
2000 to July 2001, until interrupted by outbreak response
vaccination (30). Since then, cVDPV has been detected in small
clusters in Madagascar, the Philippines and Romania (32 and

In Haiti, the national immunization days were discontinu-
and immunization coverage declined after polio eradication
was certified in the Americas in 1991. The resultant population
mix of non-immune children and recently immunized vaccine
virus-shedding children offered the milieu for a revertant virus
to spread silently and cause outbreaks, as seen in Egypt and
Haiti (30, 31). If immunization coverage remains high, as in the
Philippines and Romania, such revertants do not spread widely.
Thus, both continuing OPV and its gradual or abrupt discontinu-
ation may carry the risk of emergence of cVDPV. Any develop-
ing country wanting to discontinue OPV to avoid VAPP risks
the emergence of cVDPV, unless children are adequately pro-
tected with IPV.

Even if cVDPVs emerge only rarely and in a distant com-
munity, they are a threat everywhere as they could circulate
widely and be imported elsewhere. Therefore, rich countries
using IPV are unlikely to discontinue it until OPV has been dis-
continued everywhere. This upsets the economic attraction of
eradication — the saving from discontinuing immunization (33).
As the elimination of wild viruses was accomplished in most
developing countries using OPV, the few remaining countries
also must follow suit to achieve success without losing time to
execute a change in policy. Therefore it is necessary to consider
only the issue of eliminating the risk of VAPP using IPV where wild
viruses have been eliminated. Once VAPP is also globally “eradi-
cated”, discontinuing polio immunization will become feasible.
Thus, the availability and affordability of IPV and its suitability
in EPI in developing countries are the critical aspects of the solution
to the problems of sporadic VAPP and emergence of cVDPV.
Discontinuing OPV in developing countries is in the best public
health and economic interests of industrialized countries too.

if vaccine-related polioviruses infect children. There are geo-

graphical variations in the frequency of infection following the
first or subsequent doses (8–11). The infection rate following
one dose in a temperate region is achieved with three doses in
India (8–11). To match the rate for three doses in the USA, 10
doses are required in India (9). Because of gross differences in
the number of doses given in different settings, “doses of vac-
cine distributed” is not a suitable denominator for intercountry
comparison of the risk of VAPP (16).

Outbreaks of VAPP, a warning signal

The attenuation of polioviruses has resulted in drastic reduction
in infectiousness and transmissibility (9, 26). The median mon-
key oral infectious dose of Sabin virus (type 1) is 4 logs_{10} higher
than that of wild virus (Mahoney strain) (9, 26). When 10^{6.5}
median cell culture infectious doses of Sabin virus (type 3), ten
times higher than in OPV, were given to antibody-negative chil-
dren in India, only 76% became infected (27). Vaccine-related
polioviruses do not establish sustained circulation in the com-
munity, in contrast to wild polioviruses. Neurovirulence may
re-establish by genetic reversion (28, 29). If both neurovirulence
and transmissibility are regained, the resultant circulating vaccine-
derived poliovirus (cVDPV) becomes wild-like (30). A cVDPV
type 2 circulated for 10 years (1983–93) in Egypt, causing 32
cases of polio (31). A cVDPV type 1 circulated silently in the
Dominican Republic and Haiti from 1998 and caused an out-
break of polio (21 confirmed and 15 probable cases) from July
2000 to July 2001, until interrupted by outbreak response
vaccination (30). Since then, cVDPV has been detected in small
clusters in Madagascar, the Philippines and Romania (32 and

In Haiti, the national immunization days were discontinu-
and immunization coverage declined after polio eradication
was certified in the Americas in 1991. The resultant population
mix of non-immune children and recently immunized vaccine
virus-shedding children offered the milieu for a revertant virus
to spread silently and cause outbreaks, as seen in Egypt and
Haiti (30, 31). If immunization coverage remains high, as in the
Philippines and Romania, such revertants do not spread widely.
Thus, both continuing OPV and its gradual or abrupt discontinu-
ation may carry the risk of emergence of cVDPV. Any develop-
ing country wanting to discontinue OPV to avoid VAPP risks
the emergence of cVDPV, unless children are adequately pro-
tected with IPV.

Even if cVDPVs emerge only rarely and in a distant com-
munity, they are a threat everywhere as they could circulate
widely and be imported elsewhere. Therefore, rich countries
using IPV are unlikely to discontinue it until OPV has been dis-
continued everywhere. This upsets the economic attraction of
eradication — the saving from discontinuing immunization (33).
As the elimination of wild viruses was accomplished in most
developing countries using OPV, the few remaining countries
also must follow suit to achieve success without losing time to
execute a change in policy. Therefore it is necessary to consider
only the issue of eliminating the risk of VAPP using IPV where wild
viruses have been eliminated. Once VAPP is also globally “eradi-
cated”, discontinuing polio immunization will become feasible.
Thus, the availability and affordability of IPV and its suitability
in EPI in developing countries are the critical aspects of the solution
to the problems of sporadic VAPP and emergence of cVDPV.
Discontinuing OPV in developing countries is in the best public
health and economic interests of industrialized countries too.

The risk and burden of VAPP in developing
countries

Clinically, VAPP is indistinguishable from polio caused by wild
poliovirus, with an identical incubation period, range of severity
and case-fatality rate (12–21). In surveillance for eradication,
poliomyelitis T. Jacob John

monitor oral infectious dose of Sabin virus (type 1) is 4 logs_{10} higher
than that of wild virus (Mahoney strain) (9, 26). When 10^{6.5}
median cell culture infectious doses of Sabin virus (type 3), ten
times higher than in OPV, were given to antibody-negative chil-
dren in India, only 76% became infected (27). Vaccine-related
polioviruses do not establish sustained circulation in the com-
munity, in contrast to wild polioviruses. Neurovirulence may
re-establish by genetic reversion (28, 29). If both neurovirulence
and transmissibility are regained, the resultant circulating vaccine-
derived poliovirus (cVDPV) becomes wild-like (30). A cVDPV
type 2 circulated for 10 years (1983–93) in Egypt, causing 32
cases of polio (31). A cVDPV type 1 circulated silently in the
Dominican Republic and Haiti from 1998 and caused an out-
break of polio (21 confirmed and 15 probable cases) from July
2000 to July 2001, until interrupted by outbreak response
vaccination (30). Since then, cVDPV has been detected in small
clusters in Madagascar, the Philippines and Romania (32 and

In Haiti, the national immunization days were discontinu-
and immunization coverage declined after polio eradication
was certified in the Americas in 1991. The resultant population
mix of non-immune children and recently immunized vaccine
virus-shedding children offered the milieu for a revertant virus
to spread silently and cause outbreaks, as seen in Egypt and
Haiti (30, 31). If immunization coverage remains high, as in the
Philippines and Romania, such revertants do not spread widely.
Thus, both continuing OPV and its gradual or abrupt discontinu-
ation may carry the risk of emergence of cVDPV. Any develop-
ing country wanting to discontinue OPV to avoid VAPP risks
the emergence of cVDPV, unless children are adequately pro-
tected with IPV.

Even if cVDPVs emerge only rarely and in a distant com-
munity, they are a threat everywhere as they could circulate
widely and be imported elsewhere. Therefore, rich countries
using IPV are unlikely to discontinue it until OPV has been dis-
continued everywhere. This upsets the economic attraction of
eradication — the saving from discontinuing immunization (33).
As the elimination of wild viruses was accomplished in most
developing countries using OPV, the few remaining countries
also must follow suit to achieve success without losing time to
execute a change in policy. Therefore it is necessary to consider
only the issue of eliminating the risk of VAPP using IPV where wild
viruses have been eliminated. Once VAPP is also globally “eradi-
cated”, discontinuing polio immunization will become feasible.
Thus, the availability and affordability of IPV and its suitability
in EPI in developing countries are the critical aspects of the solution
to the problems of sporadic VAPP and emergence of cVDPV.
Discontinuing OPV in developing countries is in the best public
health and economic interests of industrialized countries too.
IPV and the final phase of polio eradication

Well-off countries are replacing OPV with IPV to eliminate VAPP. Currently, 22 countries are using IPV exclusively and eight more have a sequential schedule of IPV and OPV (D. Wod, personal communication 2003). This situation has begun to evolve as rich–poor disparity. Global public health leaders are divided on the acceptability of VAPP in developing countries. Some perceive the double standard, as developing countries will be exposed to a risk that the industrialized nations will avoid (34). The philosophical attraction of disease eradication is that it will achieve equity in health benefit globally (1). Equity demands that no child will develop polio attributable to wild poliovirus or vaccine-related virus. The hope expressed “that politicians in developing countries and zealous ethicists in the developed world … will not demand, in the name of equity in health, a total switch to IPV” (35) deserves rejection. The opportunity to advance a developing country perspective, even if only in a journal article, is comforting. The immediate responsibilities of WHO and its partner agencies in polio eradication are to assess the economic repercussions of eliminating the risk of sporadic and outbreak VAPP to alert developing countries and donors to the risk, and to design ways of minimizing and sharing the costs.

At present, very few manufacturers produce IPV and the production capacity is only 100 million doses (35). This is insufficient for meeting the increasing demand even from industrialized countries. Since demand outstrips supply, the price remains high. The volume of manufacture affects the cost of a vaccine. The current low volume of IPV manufacture was determined by low demand in previous years, which in turn was determined by the exclusive OPV policy in developing countries. A change in policy and an assured future market volume will encourage established manufacturers to augment, and new companies to invest in, IPV production. Such market forces are bound to lead to a reduction in the price of IPV. If IPV is combined with the diphtheria–tetanus–pertussis vaccine (DTP), one separate shelf item and additional health worker–child contacts and injections can be avoided, reducing the overall cost of polio immunization. Today, OPV is given both according to routine schedules as well as in annual pulse campaigns, increasing the cost of vaccine administration. Even after the certification of eradication of wild polioviruses, the continued use of OPV for an interim period for interrupting transmission of any lurking virus anywhere — or its importation to new territories — will have to be through pulsing, for the routine method was inadequate to halt transmission in the past. In Haiti the pulse campaigns were discontinued, paving the way for emergence of the outbreak of polio caused by vaccine-derived wild-like poliovirus (30). The large expenses for pulse campaigns will also be saved with the use of IPV under EPI.

The final question is about the suitability of IPV in the EPI system for assured interruption of unrecognized surviving, imported or introduced wild poliovirus or cVDPV anywhere. Experience with IPV in developing countries is meager on account of the policy to use exclusively OPV. There are several sources of information that IPV will be suitable, but they are not elaborated here (9–11, 36, 37). More details may be found in two recent publications (10, 11). However, the schedule of injections in EPI — at 6, 10 and 14 weeks — is not ideal in order to get the best antibody response in infants (36–38). In countries where the frequency of antibody response to OPV is excellent, this schedule may not match it (36–38). In contrast, where the frequency of response to OPV is low, which is the case in most developing countries, the IPV responses will be superior (12). Any deficiency in antibody response can be more than overcome with one booster injection of DTP-combined IPV in the second year of life (39, 40). Thus, the level of immune protection achieved at present by the fifth year of life with OPV (given in the EPI schedule plus annual 2-dose pulses until 5 years of age) can be matched with that achieved in the second year of life using IPV. Such an approach can be expected to offer better herd protective effect than that obtained with multiple doses of OPV (9, 10). From both the humanitarian and scientific viewpoints any polio paralysis should be prevented, not merely that caused by wild viruses. Therefore, polio eradication must be perceived as truly the zero incidence of poliovirus infection, both wild and vaccine-derived, in developed and developing countries (41).

Conflicts of interest: none declared.

Résumé

Poliomyélite paralytique postvaccinale : le point de vue des pays en développement

Lorsque le Programme élargi de Vaccination a été créé et qu’on a introduit le vaccin antipoliomyélitique oral (VPO), exclusivement utilisé par les pays en développement, les responsables nationaux de la santé publique n’ont pas eu l’occasion d’effectuer un choix éclairé entre le VPO et le vaccin antipoliomyélitique inactivé (VPI). Aujourd’hui, au fur et à mesure des progrès réalisés vers l’objectif de l’éradication mondiale de la poliomyélite due aux poliovirus sauvages, l’ensemble des pays en développement dans lesquels le VPO est employé sont confrontés au risque de poliomyélite paralytique postvaccinale (PAPP). Il y a peu encore, la PAPP était mal connue et l’analyse quantitative de ce risque limitée, mais on sait bien aujourd’hui que l’utilisation continue du VPO fait perdurer le risque de PAPP. L’interruption ou la diminution de la couverture vaccinale par le VPO augmentera le risque d’émergence de poliovirus circulants dérivés d’une souche vaccinale (PcDSV) qui reprennent des propriétés de type « virus sauvage » et risquent de provoquer des flambées de poliomyélite. Pour éliminer le risque de PcDSV, il faut maintenir une couverture vaccinale très élevée aussi longtemps que le VPO est utilisé, ou remplacer ce dernier par le VPI. Interrompre la vaccination par le VPO sans d’abord parvenir à une couverture vaccinale élevée par le VPI serait imprudent compte tenu de la possibilité que les PcDSV apparaissent. Un nombre croissant de pays industrialisés préfèrent le VPI et, comme les moyens de production n’ont pas encore été augmentés proportionnellement, son prix reste prohibitif et hors de portée des pays en développement pour lesquels, en outre, une expérience de terrain à grande échelle de l’utilisation du VPI manque. Dans ces conditions, une réorientation des politiques vaccinales visant à accroître l’utilisation du VPI dans les programmes de vaccination nationaux des pays en développement est une première étape nécessaire ; une fois que la couverture du VPI sera importante (supérieure à 85 %), le retrait du VPO pourra être amorcé.
Resumen

Poliomielitis paralítica asociada a la vacuna: perspectiva de los países en desarrollo

Cuando se estableció el Programa Ampliado de Inmunización y se introdujo en los países en desarrollo el uso exclusivo de la vacuna antipoliomielítica oral (OPV), los dirigentes de la salud pública de los países no tuvieron la oportunidad de hacer una elección con conocimiento de causa entre la OPV y la vacuna antipoliomielítica inactivada (IPV). Hoy, a medida que se avanza hacia la meta de la erradicación mundial de la poliomielitis atribuible a poliovirus salvajes, todos los países en desarrollo en los que se usa la OPV se enfrentan al riesgo de poliomielitis paralítica asociada a la vacuna (PPAV). Hasta fechas recientes había poca conciencia de la PPAV y se habían realizado escasos estudios cuantitativos del riesgo, pero ahora se sabe perfectamente que el uso continuado de la OPV perpetúa el riesgo de que aparezcan poliovirus circulantes derivados de la vacuna que recobren propiedades similares a las del virus salvaje y ocasionen brotes de poliomielitis. Para eliminar el riesgo de que aparezcan estos virus habrá que mantener una cobertura muy elevada mientras se siga utilizando la OPV o habrá que sustituirla por la IPV. Sin embargo, debido a la posible aparición de poliovirus circulantes derivados de la vacuna, sería imprudente detener la vacunación con la OPV antes de haber alcanzado una alta cobertura con la IPV. El número de países industrializados que prefieren la IPV está en aumento, pero la capacidad de fabricación no se ha ampliado, por lo que su precio sigue siendo prohibitivo e inasible para los países en desarrollo, en los cuales, además, no hay experiencia de campo a gran escala con la IPV. En estas circunstancias, el primer paso debería ser un cambio de política para aumentar el uso de la IPV en los programas nacionales de inmunización de los países en desarrollo; una vez que la cobertura de la IPV sea elevada (superior al 85%), se podrá empezar a retirar la OPV.

References

2. Strebel PM. Epidemiology of poliomyelitis one decade after the last reported case of indigenous wild-virus-associated disease. Clinical Infectious Diseases 1992;14:568-79.
A developing country perspective on vaccine-associated paralytic poliomyelitis

D.M. Salisbury

I started to read the abstract to Jacob John’s review on vaccine-associated paralytic polio (VAPP) in full agreement with his observation that wherever oral poliovirus vaccine (OPV) is used, there are risks of VAPP to vaccinees and their contacts. Indeed, where polio immunization programmes are poorly implemented, there are risks of circulating vaccine-derived polioviruses (cVDPV).

However, by the time I reached the end of the abstract, I found myself seriously disagreeing with much of what Jacob John had to say, and even more so by the end of the article.

Jacob John raises the spectre of cVDPV to give credibility to the potential seriousness of revertent vaccine strains. We have known for many years that VAPP is a rare but measurable consequence of the use of OPV, and until relatively recently there had been no concern that outbreaks of polio followed VAPP cases. The greatest risks of cVDPV are when immunization coverage is low, but VAPP is more likely to occur the higher the coverage in any population.
I was seriously worried when I read the proposition that developing countries should shift to inactivated polio vaccine (IPV), and that once IPV coverage reached high levels, the withdrawal of OPV could begin. Did this mean that developing countries should introduce IPV as well as using OPV and discontinue the latter only when the IPV coverage was high? How would that impact on the costs of polio eradication? How would high IPV coverage be achieved? What does this say about inequalities when some children who will receive OPV are denied the benefits given to others, who receive IPV, within the same country? And how could a mixed programme be implemented in a developing country?

Many of Jacob John’s arguments are based on the belief that many more doses of OPV are needed per child to protect against polio in developing countries than would be needed if IPV were used in the routine programme, and he advocates a switch to IPV to prevent the high cost of supplementary campaigns with OPV. This argument could be justified only if there was convincing evidence that IPV is as effective as or more effective than OPV in interrupting polio transmission in a developing country setting. Also, routine coverage would need to be sufficient to prevent the accumulation of enough children who are susceptible to polio and who might, therefore, sustain the transmission of wild polioviruses should they occur — or even cVDPV should there be any OPV being used in the population. Given that the countries currently posing the final barriers to polio eradication are those with the lowest immunization coverage through routine services, this seems to be a high-risk approach. He suggests that primary immunization with diphtheria–tetanus–pertussis (DTP)-IPV plus a dose of DTP-IPV in the second year would be as effective as — and safer than — primary OPV immunization followed by annual doses in campaigns, until a child reached 5 years of age. Although this may be valid for individual protection, it brings high risks on a population basis, most especially in countries where routine primary coverage is low and routine fourth doses do not even exist.

It is true that many countries are switching to IPV, and it is also true that VAPP is as much a tragedy for the individual as the natural disease itself. Jacob John fails to identify how routine coverage can be brought up to levels at which IPV can be substituted for OPV, or even convinces that it needs to be used universally once polio transmission has been interrupted. In Cuba, where there is no routine provision of OPV outside of annual campaigns, cVDPV has not been documented in the face of excellent surveillance.

Finally, I was concerned by the statement that “developing countries . . . should have been warned about VAPP”. Polio eradication represents a phenomenal global partnership in health, between countries and international organizations. Nevertheless, there are responsibilities on all of the partners to be properly informed, especially those who accept responsibilities on behalf of their populations.

Conflicts of interest: none declared.