Low back pain prevalence in Brazil: a systematic review

Prevalência da dor lombar no Brasil: uma revisão sistemática

La prevalencia de dolor lumbar en Brasil: una revisión sistemática

Abstract
The article describes the methodological quality of published studies on prevalence of low back pain in Brazil. Eighteen studies were considered eligible after searches in the following electronic databases: LILACS, PubMed, Embase, CINAHL, SPORTDiscus and SciELO. A high source of bias was observed in the criteria for external validity related to sampling, in addition to non-response bias. Considering the criteria for internal validity, the main sources of bias were the lack of an acceptable definition of low back pain and the use of instruments that lacked proven reliability and validity. No representative study was found that provides a generalizable prevalence of low back pain in Brazil. The published studies included in this review showed a high risk of bias that affects the prevalence data. Future studies with appropriate methodological design are necessary to verify the real impact of low back pain in Brazil and allow comparisons.

Low Back Pain; Bias (Epidemiology); Review

Resumo
O artigo descreve a qualidade metodológica dos estudos publicados sobre prevalência de dor lombar realizados no Brasil. Dez oito estudos foram considerados elegíveis após pesquisas nas seguintes bases de dados: LILACS, PubMed, Embase, CINAHL, SPORTDiscus e SciELO. Alto risco de viés foi encontrado nos critérios de validade externa relacionados com a amostragem, e viés de não-resposta. Considerando os critérios de validade interna, a principal fonte de viés estava relacionada com a falta de uma definição de caso aceitável, bem como a utilização de instrumentos que não apresentavam construto de confiabilidade e a validade provadas. Nenhum estudo representativo com valores de prevalência da dor lombar no Brasil foi encontrado. Os trabalhos publicados incluídos nesta revisão apresentaram um alto risco de viés que afetam os dados de prevalência. Futuros estudos com desenho metodológico adequado são necessários, a fim de apresentar o real impacto da dor lombar no Brasil e permitir comparações.

Dor Lombar; Viés (Epidemiologia); Revisão
Introduction

Low back pain can affect up to 65% of the population per year and up to 84% during life span, with a point prevalence of approximately 11.9% in the world population, which overloads all health services. However, these rates may be underestimated, since less than 60% of people with low back pain actually seek treatment. Despite these numbers, a specific diagnosis presenting the causes of low back pain is not determined in 90-95% of the cases, since low back pain has a multifactorial etiology. Some authors relate the presence of low back pain to a set of causes, including social and demographic factors (such as age, gender, income, and schooling), health status, lifestyle or behavior factors (smoking, eating, and sedentary lifestyle), and occupation factors (such as heavy loadings and repetitive movements). However, a systematic review conducted by Vollin found that in the developed countries, where the physical demand of work tends to be less intense, prevalence of low back pain is twice as high as in low-income countries, where the physical demand of work is higher. Based on the findings of this study, sedentary lifestyle seems to have a greater impact on the occurrence of low back pain when compared to intense physical work.

Since low back pain is responsible for high rates of disability and work absenteeism. This condition imposes a high cost on the society, especially in developed countries. Various studies in recent years have attempted to understand more about low back pain and how to manage it. However, precise estimates of low back pain prevalence are necessary to elucidate the developmental perspective of low back pain in different countries. Prevalence studies are widely used in epidemiology due their economic feasibility and easiness, with relatively short duration, providing indicators of the community’s health situation, based on evaluation of the individual health status in each member of the group and producing global health indicators for the target group.

According to the Brazilian National Household Sample Survey conducted by the Brazilian Institute of Geography and Statistics, spinal pain (cervical, thoracic, lumbar, and pelvic pain) is the second most prevalent health condition in Brazil (13.5%) among the chronic conditions identified by a physician or other health professional. Spinal pain is overcome only by hypertension (14%). However, this survey does not report specific prevalence rates for low back pain, which has different clinical manifestations and prognosis when compared to cervical tho-
Risk of bias of individual studies

Considering that selected studies could present potential sources of bias and influence the results, the instrument developed by Hoy et al. \(^33\) (Table 2) was used to assess the risk of bias of the eligible studies. This instrument allows verifying the risk of bias for factors related to external and internal validity, allowing classification of the risk of bias as low, moderate, or high. This instrument was chosen mainly because it is easy to use, shows high inter-examiner agreement, and it was developed specifically to measure the risk of bias in prevalence studies for patients with low back pain \(^33\).

Risk of bias was analyzed by two independent reviewers (L.O.P. and P.R.C.N.) and based on the following: (1) representativeness of the study sample in relation to the Brazilian national population, allowing generalization of the results; (2) sampling system that represents the target population; (3) sample selection method; (4) probability of non-response bias; (5) how the target response was obtained; (6) definition of low back pain used for the sample selection; (7) reliability and validity of the study tools; (8) standardization of data collection; (9) appropriate target prevalence period; and (10) presence of error in calculating and/or reporting the numerator and denominator of the target parameter. The first four criteria relate to the study’s external validity, and the other items report the risk of bias for internal validity. At the end, the studies were classified as presenting low risk of bias when at least nine criteria were met, moderate risk of bias for studies that met seven or eight criteria, and high risk of bias when the studies met less than seven criteria. The reviewers discussed the cases in which there was no agreement and classification was determined by consensus. The levels of agreement between reviewers were not measured in this study. Table 2 presents the operationalization of each item.

Data extraction and statistical analysis

The target variables (first author, year of publication, type of study, data collection tool, sample size, population, age, gender, definition of low back pain, period of prevalence, and prevalence estimates) were extracted by one of the authors to an Excel spreadsheet (Microsoft Corp., USA) (Table 3). The target data were presented descriptively. Due to the high heterogeneity among the eligible studies, it was not possible to conduct a meta-analysis.

Results

The search strategy retrieved 263 articles, 63 of which were duplicates. After the screening process (titles, abstracts, and full text reading), 18 studies \(^34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51\) (with a population of 19,387 individuals and samples varying from 56 to 3,269 participants \(^34,39\)) met the inclusion criteria. Figure 1 shows flow diagram of this review.
Table 2

Evaluation of risk of bias.

<table>
<thead>
<tr>
<th>Risk of bias</th>
<th>Criterion for response (please circle one choice)</th>
</tr>
</thead>
<tbody>
<tr>
<td>External validity</td>
<td></td>
</tr>
</tbody>
</table>
| 1) Was the study’s target population a close representation of the national population in relation to the relevant variables, for example age, gender, and occupation? | • Yes (LOW RISK): The study’s target population was a close representation of the national population.
• No (HIGH RISK): The study’s target population was not clearly representative of the national population. |
| 2) Was the sampling system a true or close representation of the target population? | • Yes (LOW RISK): The sampling system was a true or close representation of the target population.
• No (HIGH RISK): The sampling system was not a true or close representation of the target population. |
| 3) Was some form of random selection used to select the sample or was a census performed? | • Yes (LOW RISK): A census was performed or some form of random selection was used to select the sample (for example, simple random sampling, stratified random sampling, cluster sampling, systematic sampling).
• No (HIGH RISK): No census was performed and no form of random selection was used to select the sample. |
| 4) Was the probability of non-response bias minimal? | • Yes (LOW RISK): The response rate for the study was $\geq 75\%$, that is, an analysis was performed that showed no significant difference in relevant demographic characteristics between responders and non-responders.
• No (HIGH RISK): The response rate was $< 75\%$, and if any analysis was performed to compare responders and non-responders, it showed a significant difference between them in relevant demographic characteristics. |
| **Internal validity** | |
| 5) Were the data collected directly from the individuals (rather than from a proxy)? | • Yes (LOW RISK): All the data were collected directly from the individuals.
• No (HIGH RISK): In some cases the data were collected from a proxy. |
| 6) Did the study use an acceptable case definition? | • Yes (LOW RISK): The study used an acceptable case definition.
• No (HIGH RISK): The study did not use an acceptable case definition. |
| 7) Did the study instrument that measures the target parameter (for example, prevalence of low back pain) demonstrate reliability and validity (if necessary)? | • Yes (LOW RISK): The study instrument demonstrated reliability and validity (if necessary), for example, test-retest, pilot, validation by a previous study, etc.
• No (HIGH RISK): Reliability and validity were not demonstrated for the instrument (if they were necessary). |
| 8) Was the same data collection model used for all the study subjects? | • Yes (LOW RISK): The same data collection model was used for all the individuals.
• No (HIGH RISK): The same data collection model was not used for all the individuals. |
| 9) Was the duration of the shortest prevalence period appropriate for the target parameter? | • Yes (LOW RISK): The duration of the shortest prevalence period was appropriate for the target parameter (for example, point prevalence, one week, one year).
• No (HIGH RISK): The duration of the shortest prevalence period was not appropriate for the target parameter (for example, lifetime prevalence). |
| 10) Were the numerator and denominator for the target parameter appropriate? | • Yes (LOW RISK): The study used an appropriate numerator and denominator for the target parameter (for example, prevalence of low back pain).
• No (HIGH RISK): The study used a numerator and denominator for the target parameter, but one or both of them was inappropriate. |

(continues)
Table 2 (continued)

<table>
<thead>
<tr>
<th>Risk of bias</th>
<th>Criterion for response (please circle one choice)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal validity</td>
<td></td>
</tr>
</tbody>
</table>
| 11) Summary of overall risk of bias in the study | • **LOW RISK OF BIAS**: Further research is highly unlikely to change our confidence in the estimate.
• **MODERATE RISK OF BIAS**: Further research is likely to have an important impact on our confidence in the estimate and may change it.
• **HIGH RISK OF BIAS**: Further research is highly likely to have an important impact on our confidence in the estimate and is likely to change it. |

Adapted from Hoy et al. 2.

Table 3

Prevalence rate of low back pain in the Brazilian population.

<table>
<thead>
<tr>
<th>Author/Year</th>
<th>Study design</th>
<th>Data collection tool</th>
<th>Sample size (N)</th>
<th>Population</th>
<th>Mean age (years)</th>
<th>Gender</th>
<th>Definition of low back pain</th>
<th>Prevalence period</th>
<th>Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Araújo & Alexandre 34 (1998)</td>
<td>Cross-sectional</td>
<td>Original questionnaire</td>
<td>56</td>
<td>Surgical center nursing team at a University Hospital in Campinas (São Paulo State)</td>
<td>40</td>
<td>100% females</td>
<td>Not informed</td>
<td>6 months</td>
<td>34.1%</td>
</tr>
<tr>
<td>Célia & Alexandre 35 (2003)</td>
<td>Cross-sectional</td>
<td>Adapted Nordic questionnaire</td>
<td>61</td>
<td>Workers involved in patient transport in Campinas (São Paulo State)</td>
<td>41.2</td>
<td>54.1% males</td>
<td>Not informed</td>
<td>7 days</td>
<td>11.5%</td>
</tr>
<tr>
<td>Gurgueira et al. 36 (2003)</td>
<td>Cross-sectional</td>
<td>Adapted Nordic questionnaire</td>
<td>105</td>
<td>Nursing staff in Campinas (São Paulo State)</td>
<td>36.5</td>
<td>100% females</td>
<td>Not informed</td>
<td>7 days</td>
<td>31.4%</td>
</tr>
<tr>
<td>Peres 37 (2004)</td>
<td>Cross-sectional</td>
<td>Original questionnaire/Body discomfort map</td>
<td>156</td>
<td>Physical therapists in Cascavel (Paraná State)</td>
<td>Not informed</td>
<td>Not informed</td>
<td>Not informed</td>
<td>Not specified</td>
<td>33.97%</td>
</tr>
<tr>
<td>Silva et al. 38 (2004)</td>
<td>Cross-sectional</td>
<td>Adapted Nordic questionnaire</td>
<td>3,182</td>
<td>Adults ≥ 20 years, residing in Pelotas (Rio Grande do Sul State)</td>
<td>44</td>
<td>56.8% females</td>
<td>Not informed</td>
<td>Chronic, > 7 weeks</td>
<td>4.2%</td>
</tr>
<tr>
<td>Fassa et al. 39 (2005)</td>
<td>Cross-sectional</td>
<td>Nordic questionnaire</td>
<td>3,269</td>
<td>Children 10-17 years of age in Pelotas (Rio Grande do Sul State)</td>
<td>13</td>
<td>50% males</td>
<td>Not informed</td>
<td>1 year</td>
<td>13.1%</td>
</tr>
<tr>
<td>Andruasaitis et al. 40 (2006)</td>
<td>Cross-sectional</td>
<td>Original questionnaire</td>
<td>410</td>
<td>Truck drivers in São Paulo State</td>
<td>40.17</td>
<td>100% males</td>
<td>Not specified</td>
<td>Pain between lower ribs and gluteal fold, not related to injuries or falls</td>
<td>59%</td>
</tr>
</tbody>
</table>
Table 3

Prevalence rate of low back pain in the Brazilian population.

<table>
<thead>
<tr>
<th>Author/Year</th>
<th>Study design</th>
<th>Data collection tool</th>
<th>Sample size (N)</th>
<th>Population</th>
<th>Mean age (years)</th>
<th>Gender</th>
<th>Definition of low back pain</th>
<th>Prevalence period</th>
<th>Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kreling et al. 41 (2006)</td>
<td>Cross-sectional</td>
<td>Original questionnaire</td>
<td>505</td>
<td>Employees of the State University in Londrina (Paraná State)</td>
<td>Not informed</td>
<td>54.1% females</td>
<td>Not informed</td>
<td>Not specified</td>
<td>19.4%</td>
</tr>
<tr>
<td>Almeida et al. 42 (2008)</td>
<td>Cross-sectional</td>
<td>Original questionnaire</td>
<td>2,281</td>
<td>Adults ≥ 20 year residing in Salvador (Bahia State)</td>
<td>40.9</td>
<td>55.5% females</td>
<td>Not informed</td>
<td>Chronic, ≥ 6 months</td>
<td>14.7%</td>
</tr>
<tr>
<td>Matos et al. 43 (2008)</td>
<td>Cross-sectional</td>
<td>Nordic questionnaire</td>
<td>775</td>
<td>Adults ≥ 20 years, members of an employees’ cooperative at University of Vale do Rio dos Sinos</td>
<td>54.2% females</td>
<td>Not informed</td>
<td>3 months</td>
<td>46%</td>
<td></td>
</tr>
<tr>
<td>Motta et al. 44 (2010)</td>
<td>Cross-sectional</td>
<td>Original questionnaire</td>
<td>150</td>
<td>Rural workers ≥ 20 years from 7 communities in Concórdia (Santa Catarina State)</td>
<td>40.41</td>
<td>100% females</td>
<td>Not informed</td>
<td>Lifetime</td>
<td>93.3%</td>
</tr>
<tr>
<td>de Vitta et al. 45 (2011)</td>
<td>Cross-sectional</td>
<td>Nordic questionnaire</td>
<td>1,236</td>
<td>Children 11 to 15 years of age in the municipal school system in Bauru (São Paulo State)</td>
<td>Not informed</td>
<td>51.78% females</td>
<td>Pain or discomfort in the previous 12 months, not related to injury or menstrual colic</td>
<td>1 year</td>
<td>19.5%</td>
</tr>
<tr>
<td>Falavigna et al. 46 (2011)</td>
<td>Cross-sectional</td>
<td>Original questionnaire</td>
<td>416</td>
<td>Physical therapy and medical students at the University of Caxias do Sul (Rio Grande do Sul State)</td>
<td>21.68</td>
<td>73.1% females</td>
<td>Pain in the area below the ribs and above the hips</td>
<td>Point</td>
<td>14.4%</td>
</tr>
<tr>
<td>Fernandes et al. 47 (2011)</td>
<td>Cross-sectional</td>
<td>Nordic questionnaire</td>
<td>577</td>
<td>Plastics factory workers in Salvador (Bahia State)</td>
<td>Not informed</td>
<td>69% males</td>
<td>Not informed</td>
<td>1 year</td>
<td>28.9%</td>
</tr>
<tr>
<td>Ferreira et al. 48 (2011)</td>
<td>Cross-sectional</td>
<td>Nordic questionnaire</td>
<td>972</td>
<td>Adults ≥ 20 years, residing in the urban area of Pelotas (Rio Grande do Sul State)</td>
<td>41</td>
<td>57% females</td>
<td>Not informed</td>
<td>1 year</td>
<td>40%</td>
</tr>
<tr>
<td>Onofrio et al. 49 (2012)</td>
<td>Cross-sectional</td>
<td>Original questionnaire</td>
<td>1,233</td>
<td>Students 13 to 19 years of age in Pelotas (Rio Grande do Sul State)</td>
<td>15.9</td>
<td>54% females</td>
<td>Not informed</td>
<td>1 month</td>
<td>13.7%</td>
</tr>
<tr>
<td>Dellaroza et al. 50 (2013)</td>
<td>Cross-sectional</td>
<td>Original questionnaire</td>
<td>1,271</td>
<td>Elderly residing in São Paulo (São Paulo State)</td>
<td>69.5</td>
<td>59.6% females</td>
<td>Not informed</td>
<td>Chronic, ≥ 6 months</td>
<td>25.4%</td>
</tr>
<tr>
<td>Meucci et al. 51 (2013)</td>
<td>Cross-sectional</td>
<td>Adapted Nordic questionnaire</td>
<td>2,732</td>
<td>Adults > 20 years, residing in Pelotas (Rio Grande do Sul State)</td>
<td>Not informed</td>
<td>57.9% females</td>
<td>Not informed</td>
<td>Chronic, > 7 weeks</td>
<td>9.6%</td>
</tr>
</tbody>
</table>
The eligible studies showed the recent interest in prevalence of low back pain in the Brazilian population, with the first article published in 1998 and the remaining ones were published over the last 10 years. Most of the studies included males and females, ranging from children to the elderly, with populations residing in urban and rural areas, but none showed separate prevalence values according to gender. Three studies reported on the prevalence of low back pain exclusively in women, two of which presenting the rates observed in female urban workers and one in female farm laborers, but the different prevalence periods prevented any comparison. The principal research design was cross-sectional. Data collection used original questionnaires in 50% of the studies and one in female farm laborers, but the different prevalence periods prevented any comparison. The high heterogeneity of eligible studies also prevented a summary prevalence rate over time in most of the periods analyzed, and it was only possible to verify the one-year prevalence of low back pain, reaching more than 50% of adults and 13.1% to 19.5% of adolescents, whereas chronic low back pain affected between 4.2% and 14.7% of the overall population.

The risk of bias in the eligible studies ranged from 4 to 8 of a 10 possible points. Classification of the overall risk of bias showed...
that 11 studies presented high risk of bias, while seven studies had moderate risk of bias. Greater risk of bias was found in the criteria related to external validity: representativeness of Brazilian national population (18 studies), sampling system (15 studies), sample selection method (12 studies), and non-response bias (5 studies). The items referring to internal validity: definition of low back pain, and reallibility and validity of the study tools were not completed in 15 34,35,36,37,38,39,41,42,43,44,47,48,49,50,51 and 8 34,37,41,42,44,46,49,50 of the studies, respectively. Table 4 shows the criteria for evaluating risk of bias in each study.

Discussion

This review systematically evaluated and analyzed the methodological quality of the existing literature reporting data on the prevalence of low back pain in the Brazilian population. To our knowledge, this is the first systematic review on the prevalence of low back pain in Brazil. Our review showed the recent interest in the epidemiology of low back pain in Brazil, with most of the studies published over the last ten years.

The recent interest in researching the prevalence of low back pain in the Brazilian population may reflect the rising financial costs for health services and the social security system in recent years. Likewise, studies on the prevalence of low back pain in Africa and the occurrence of global low back pain also reflect the recent interest on this topic.

The most interesting result of the current review is the higher prevalence of chronic low back pain in the city of Salvador (14.7%) when compared to the city of Pelotas, as reported in studies 38,51, estimated at 4.2% and 9.6%. The study population in Salvador presented some different characteristics, for example more non-white individuals (70.2%), lower social class (55.2%), lower schooling (42.6%), obesity (50.4%), and sedentary lifestyle (71.5%) when compared to the Pelotas sample, and these differences may have contributed to the higher prevalence of low back pain observed in Salvador. However, we believe that the main determinant of the difference in prevalence rates was the studies’ lack of methodological rigor. The two studies in Pelotas showed a moderate overall risk of bias, while the study in Salvador showed a high overall risk of bias, potentially influencing the prevalence rates. Despite the high prevalence of chronic low back pain in adults in Salvador when compared to Pelotas, the rates found in Salvador were lower than the mean value (19.4%) in the world population. Still, we cannot claim that the prevalence of chronic low back pain in Brazil is lower, since the rates are based only on regional data of studies with poor methodological quality. Our results revealed the heterogeneity of methods, data collection, types of study population, and results, thus preventing any significant pooling of data, the same problem reported in other reviews.

In addition, most of the studies reported prevalence rates for workers and students, as observed by Louw et al. The preference for these population groups may have been due to sample feasibility and the presence of characteristics defined as risk factors for low back pain, such as greater stress and sustained postures. The study of low back pain prevalence in students allows knowing the problem’s size in this population group, and also establishing possible etiological factors, since according to their school grade, accelerated growth and strain in specific muscles can occur, in addition to daily habits like smoking, all known risk factors for low back pain. Knowledge of modifiable risk factors is important to establish preventive strategies, since low back pain in adulthood is more common in individuals that already presented the symptoms during adolescence.

This review’s main finding is that the studies on prevalence of low back pain in Brazilian population show significant limitations in the methodological design of aspects related to external and internal validity. Among the criteria for external validity, none of the studies presented a sample that represented Brazilian national population, while the samples consisted mainly of the population in municipalities with research centers and specific population groups. Studies with samples that represent the national population are difficult, since they require a larger team and high financial cost. The solution to this problem may be multicenter studies involving research groups from different regions of the country. Only two studies described the sample calculation in their methods. The studies that met eligible criteria in this review generally presented an insufficient sample. According to the methodological review by Loney & Stratford, considering the proportion of individuals that suffer from low back pain, the adequate sample size for prevalence studies on low back pain should be 1,067 participants. The sampling system was considered inadequate in eight studies, which involved only a specific subgroup of the population not described in the title (e.g., students, nurses, truck drivers, etc.). Only six studies used a proper sample selection method like a random selection. In the others, convenience sample
Table 4

Evaluation of risk of bias in the studies.

<table>
<thead>
<tr>
<th>Author/Year</th>
<th>Was the study’s target population a close representation of the national population?</th>
<th>Was the sampling system a true or close representation of the target population?</th>
<th>Was some form of random selection used to select the sample or was a census performed?</th>
<th>Was the probability of non-response bias minimal?</th>
<th>Were the data collected directly from the individuals?</th>
<th>Did the study use an acceptable case definition?</th>
<th>Did the study instrument measuring the target parameter show reliability and validity?</th>
<th>Was the same data collection model used for all the subjects?</th>
<th>Was the shortest prevalence period appropriate for the target parameter?</th>
<th>Were the numerator and denominator for the target parameter appropriate?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Araújo & Alexandre 34 (1998)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Célia & Alexandre 35 (2003)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Gurgueira et al. 36 (2003)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Peres 37 (2004)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Silva et al. 38 (2004)</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Fassa et al. 39 (2005)</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Andrusaitis et al. 40 (2006)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Kreling et al. 41 (2006)</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Almeida et al. 42 (2008)</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Matos et al. 43 (2008)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Motta et al. 44 (2010)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>de Vitta et al. 45 (2011)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Falavigna et al. 46 (2011)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Fernandes et al. 47 (2011)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Ferreira et al. 48 (2011)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Oronfrio et al. 49 (2012)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Dellaroza et al. 50 (2013)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Meucci et al. 51 (2013)</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

N: criterion not met; Y: criterion met.
was the principal form of participant selection. Many researchers prefer this sampling technique due to its ease, speed, and low cost. However, this sampling process may be biased, generating systematic error and failing to reflect the true prevalence of low back pain in the study population. Ten studies showed a risk of non-response bias by failing to report the occurrence of losses or refusals, which can generate confounding factors and prevent generalization of the results. Again, the lack of transparency on this item can lead to biased prevalence estimates.

The items referring to internal validity, definition of low back pain, and reliability and validity of study tools were not completed in 15 studies and 8 studies respectively. Only three studies cited what they defined as low back pain, with distinct definitions: “pain between the lower part of the ribs and the gluteal fold, not related to injuries or falls”, “pain or discomfort in the last 12 months not related to trauma or menstrual colic”, and “pain in the area between the ribs and the hips”. According to a consensus on low back pain in prevalence studies, an ideal definition of low back pain should include the site of the pain, symptoms, duration, frequency, and severity.

Data were also collected in a non-standardized way, so that only half of the 18 eligible studies used the Standardized Nordic Questionnaire as proposed previously by Leboeuf-Yde & Lauritsen. Similar findings came from the review published in 2000 by Walker. As demonstrated in the literature, the way the questionnaire is applied and the selected tool itself influence the results of prevalence studies.

A systematic review by Hoy et al. found that a high risk of bias for case definition and validity and reliability of the study tools was associated with results reporting higher prevalence.

Our study has some limitations. We attempted to minimize these limitations by evaluating the methodological criteria of the eligible studies, but unlike other reviews, we did not establish a cut-off point based on this methodological evaluation in order to include the studies in this review. This decision was due to the low number of studies that would have met the inclusion criteria considering this parameter, as well the fact that this was the first systematic review as far as we know on the prevalence of low back pain in Brazil, which helps explain these shortcomings and points to possible ways to overcome them.

Our review showed that the different studies that attempted to measure the prevalence of low back pain found a high one-year prevalence rate (> 50%) in adults, from 13.1% to 19.5% in adolescents, and prevalence rates of 4.2% to 14.7% for chronic low back pain in the general population. Due to the high risk of bias of the eligible studies, these rates may not reflect the real impact of low back pain in Brazil. The lack of precise epidemiological data hinders the development of preventive strategies and adequate management, which can result in worse prognosis.

This study helped to reveal the main shortcomings of the current studies on the prevalence of low back pain in the Brazilian population. These findings can guide actions to produce robust evidence on this topic in the future. We strongly recommend future robust studies with low risk of bias.

Resumen

El artículo describe la calidad metodológica de los estudios publicados sobre la prevalencia de dolor lumbar realizados en Brasil. Dieciocho estudios se consideraron elegibles, después de búsquedas en las siguientes bases de datos electrónicas: LILACS, PubMed, Embase, CINAHL, SPORTDiscus y SciELO. Se encontró una alta fuente de sesgo en los criterios de validez externos, relacionados con la toma de muestras, y el sesgo de no respuesta. Teniendo en cuenta los criterios de validez interna, la principal fuente de sesgo se relaciona con la falta de una definición de caso aceptable, y el uso de instrumentos que no tenían la fiabilidad y validez de constructo. No se encontraron estudios representativos que ofrecieran una prevalencia generalizable de dolor lumbar en Brasil. Los estudios publicados, incluidos en esta revisión, tenían un alto riesgo de sesgo que afecta a los datos de prevalencia. Son necesarios futuros estudios con diseño metodológico apropiado, con el fin de presentar el impacto real del dolor lumbar en Brasil para permitir comparaciones.

Dolor de la Región Lumbar; Sesgo (Epidemiología); Revisión
Contributors

P. R. C. Nascimento and L. O. P. Costa contributed to the study’s conceptualization, elaboration, data analysis and interpretation, revision, and approval of the final version for publication.

References

44. Motta AF, Cardoso FL, Saccomori C, Sperandio FF, Santos GM. Dor lombar auto-referida em mulheres trabalhadoras rurais de sete comunidades de Concórdia-SC. Ter Man 2010; 8:10-6.

Submitted on 23/Mar/2014
Final version resubmitted on 05/Feb/2015
Approved on 02/Mar/2015