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ABSTRACT: Objective: To analyze the conceptual and technical differences between three definitions of  
spatial relations within a Bayesian mixed-effects framework: classical multilevel definition, spatial multiple 
membership definition and conditional autoregressive definition with an illustration of  the estimate of  geographic 
disparities in early neonatal mortality in Colombia, 2011-2014. Methods: A registry based cross-sectional study 
was conducted. Births and early neonatal deaths were obtained from the Colombian vital statistics registry for 
2011-2014. Crude and adjusted Bayesian mixed effects regressions were performed for each definition of  spatial 
relation. Model fit statistics, spatial autocorrelation of  residuals and estimated mortality rates, geographic 
disparity measures, relative ratios and relative differences were compared. Results: The definition of  spatial 
relations between municipalities based on the conditional autoregressive prior showed the best performance 
according to both fit statistics and residual spatial pattern analyses. Spatial multiple membership definition had 
a poor performance. Conclusion: Bayesian mixed effects regression with conditional autoregressive prior as an 
analytical framework may be an important contribution to epidemiological design as an improved alternative 
to ecological methods in the analyses of  geographic disparities of  mortality, considering potential ecological 
bias and spatial model misspecification. 

Keywords: Health status disparities. Early neonatal mortality. Gross domestic product. Vital statistics. Spatial 
regression. Bayesian analysis.
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INTRODUCTION

In response to growing interest in social and spatial epidemiology studies, which attempt 
to explain both individual probability of  death and between-group disparities within this 
probability, different methodological approaches for area-level data have been proposed in 
order to simultaneously model them. Many of  these proposals are modifications or exten-
sions of  mixed-effects modeling1. One of  the main arguments for its use is the fact that indi-
viduals who belong to the same social and geographic group share ecological expositions 
that make it highly likely that they have similar observed and unobserved characteristics2. 
Mixed-effects models (MM) have been widely used in public health to model both geograph-
ical and non-geographical classifications of  people. Some of  the most studied classifications 
are neighborhood and social class, respectively. However, in recent years the applicability and 
pertinence of  hierarchical MM to model geographic data have been discussed. A complete 
review of  the main discussions can be found in a recent paper by Owen et al.3.

In the context of  the geographical classification of  people, hierarchical MM captures 
vertical dependence (hierarchy) but omits horizontal dependence (proximity) between geo-
graphic units4. In other words, these models do not take into consideration the spatial con-
figuration of  geographic units. The validity of  interpretations about geographical phenom-
ena that arise from non-spatial mixed-effects analyses have been questioned5. Even when the 
standard hierarchical MM only takes into account individual membership to a single geo-
graphic unit, interpretations tend to be done in terms of  geographical effects. An alternative 
to standard MM are multiple membership models, which recognize that an individual can 

RESUMO: Objetivo: Analisar as diferenças conceptuais e técnicas entre três definições de relações espaciais dentro 
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belong to multiple groups simultaneously. In a geographical setting, multiple membership 
is supposed to model the effect of  surrounding geographic units on an individual member-
ship to a single geographic unit. Nevertheless, membership models, both single and multi-
ple, are closer to the concept of  place, which recognizes group membership, but may not  
operationalize space well, a concept that incorporates the interactions between places6.

Spatial econometricians have also developed techniques to answer similar questions 
about geographical effects, while public health researchers have mainly opted for multilevel 
models. One of  the most widely used alternatives in spatial econometrics is the simultane-
ous autoregressive model (SAR). SAR models7 and other similar ones recognize the spatial 
arrangement of  geographic units but do not allow for the identification of  local differences. 
They only permit the evaluation of  the global model. In addition, SAR models exclude the 
possibility of  evaluating interactions between the characteristics of  individuals and geo-
graphic units, which may lead to ecological fallacies. 

These two methodological approaches respond to two different questions that could 
become complementary. The hierarchical MM model’s main focus is on vertical depen-
dency and vertical effects, while the spatial econometric model’s main focus is on horizontal 
dependency and horizontal effects. Dong8 identified how the failure to simultaneously con-
sider both effects in research settings, where hierarchical classification has a spatial nature, 
may lead to confounding. He found that a hierarchical MM could erroneously treat a hor-
izontal interaction effect as a vertical contextual effect; and a spatial econometrics model 
could erroneously treat a vertical contextual effect as a horizontal interaction effect, which 
also may lead to confounding. The alternative, to simultaneously consider both effects, 
are recent. Main developments can be found in spatial econometrics with spatially varying 
autoregressive models (SVSAR)9, and in public health with spatial random effects models 
(SREMM)10. SREMM are basically mixed-effects models with spatial consideration defined 
within a conditional autoregressive prior (CAR). However, those models tend to be applied 
to aggregate data and have disease mapping purposes rather than analytical purposes with 
individual data. An exception can be found in recent work by Dong et al. where the model 
is extended to individual nested data5.

In this paper, a hybrid approach to geographic disparity analyses with elements from social 
epidemiology and spatial econometrics were tested in an attempt to face spatial relation mis-
specification and ecological bias, the main limitations of  each individual methodology. In the 
context of  social and geographic disparities, an appropriate measurement of  the magnitude 
of  the between-group variability in mortality, and the identification of  factors that explain it, 
are highly relevant. They can provide a deeper understanding of  the determinants of  mortality 
disparities and consequently, help encourage appropriate public health and policy decisions, 
which can focus on areas for intervention and the prioritization of  resources.

Thus, the aim of  this paper is to analyze the conceptual and technical differences between 
three definitions of  spatial relations within the Bayesian mixed-effects frameworks: classical 
multilevel definition, spatial multiple membership definition and conditional autoregressive 
definition, with an illustration of  the estimation of  geographic disparities in early neonatal 
mortality in Colombia from 2011 to2014.
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METHODS

DESIGN

A registry based cross-sectional study was conducted. All births recorded in the Vital Statistics 
registry for the period 2011 – 2014 with complete information on newborn sex, mother’s munic-
ipality of  residence, and residential area type were considered as part of  the study population. 

VARIABLES AND DATA SOURCE

Data on births and early neonatal deaths (within first seven days of  life) that occurred 
during the study period were obtained from the Vital Statistics registry11. 2,666,483 births 
were recorded, 5,073 (0.2%) birth certificates had quality problems and were excluded. A total 
of  2,661,410 births were analyzed. 13,478 early neonatal deaths were registered, 930 (7.0%) 
death certificates had quality problems and were excluded. A total of  12,538 deaths were 
included. Births and deaths were classified by the mother’s municipality of  residence accord-
ing to Colombian political-administrative division in 1,122 geographic areas. Residential area 
type and a proxy of  Gross Domestic Product – GDP — were considered as individual and 
area-level variables, respectively. 

DEFINITIONS OF SPATIAL RELATION BETWEEN MUNICIPALITIES

Three Bayesian mixed-effects logistic models of  newborns (*
i
) cross-classified in munic-

ipalities (*(2)) were constructed, one for each definition of  spatial relations. Definitions are 
presented in cross-classified models notation12 to facilitate their comparison. For all models, 
individual-level early neonatal death, the dependent variable y

i
, was assumed to be binomi-

ally distributed with a probability equal to π
i
 (Equation 1), and regression equations were 

defined with a random intercept (β0i
) and fixed slopes (β

k,k≠0) for individual and area-level 
variables, as presented in Equation 2.

y
i
~Binomial (1, π

i
)� (1)

logit (π
i
)= β0i

+ β1x1i
+ β2x2i 

+…+ β
k
x

ki
� (2)

Municipal early neonatal mortality rates were estimated using local intercepts (β0i
). The area-

level residual for each municipality (u0,m(i)
(2) ) was assumed to be normally distributed with the 

mean and variance specified according to each definition of  spatial relations, as presented in 
Figure 1. The main differences between the definitions are related to assumptions about spatial 
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autocorrelation (or independence) of  area-level residuals and the way to handle them. Only 
these differences are highlighted for each definition. Technical details can be consulted in the 
references provided.

CLASSICAL MULTILEVEL MODEL (CM)

The CM model13 implies a hierarchical structure with no explicit definition for spatial 
relations, ignoring the geographic arrangement of  municipalities. In this model the esti-
mation of  residuals (Figure 1, Equation 4) only takes into consideration the municipality 
where each newborn resides, and independence between area-level residuals is assumed in 
the distribution function (Figure 1, Equation 5). 

SPATIAL MULTIPLE MEMBERSHIP MODEL (SMM)

Similar to the CM model, the SMM model14 assumes independence between area-level 
residuals in the distribution function, thus it uses the same parameters that the CM model 
does (Figure 1, Equation 5). However, the spatial dimension is operationalized by weighting 
the area-level residuals of  neighboring municipalities when estimating each local intercept 
(Figure 1, Equation 3). Consequently, SMM indirectly relates municipalities through the 

Model Local intercept
Parameters for the distribution  

of area-level residuals

SMM β0i
= β0+Σ

j𝜖𝜖Nm(i)wj
    u0,m(i)+e0i

(2)(2)
� [3] u0,m(i)~N(0,Ω

u  )
(2) (2) 

 with Ω
u  =Ω

u0,0
(2) (2) 

�
[5]

CM

β0i
= β0+u0,m(i)+e0i

(2)
� [4]

CAR  with Ω
u  =Ω

u0,0, and(2) (2) 

u0,m(i)~N �ū0,m(i), 
(2) (2) 

(2) Ω
u 

(2) r
m(i) 

�___

ū0,m(i)=Σ
j𝜖𝜖Nm(i)wj

    u0j
 �(2)(2) (2) (2) r

m(i) �

[6]

β0i: local intercept for the municipality where the newborn i resides; β0: fixed intercept; u0,m(i)
(2) : area-level residual for the 

municipality where the newborn i resides; e0i: error term at the individual-level, wj
  (2) : area-level weight of the neighbor 

municipality j; j  Nm(i)𝜖𝜖 : the neighborhood constructed for the municipality where the newborn i resides ; (2) Ωu : variance of the 
area-level residuals; (2) Ωu0,0

: sample variance of the area-level residuals; ū0,m(i): average of the area-level residuals with the 
conditional autoregressive prior constrain; (2) rm(i) : size of the neighborhood of the municipality where the newborn i resides. 
Equations are expressed with notation for cross-classified models12. 
Figure 1. Local intercept and parameter equations for the distribution of area-level residuals for 
each spatial relation definition.
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cross-classification of  newborns. Neighborhood was defined as all adjacent municipalities 
and each one was assigned a weight proportional to the size of  the neighborhood.

SPATIAL EFFECTS WITH THE CONDITIONAL AUTOREGRESSIVE PRIOR MODEL (CAR)

The CAR model does not assume independence between area-level residuals like the CM 
and SMM models do. It models area-level spatial autocorrelation of  residuals using a conditional 
autoregressive prior5 with functions for mean and variance, which involve the neighborhoods 
residuals (Figure 1, Equation 6). Similar to spatial autocorrelation that is modeled in the distribu-
tion function, the CAR model does not apply weights to area-level residuals like the SMM model 
does, but it uses the same equation for the CM model (Figure 1, Equation 4). The CAR model 
directly relates municipalities at the area-level. The same definition of  neighborhood used for 
the SMM model was applied to the CAR model, but neighborhoods’ weights were fixed to 1.

For the SMM and CAR models, the neighborhoods’ matrix was constructed with the 
ArcGIS add-in Adjacency for WinBUGS15.

DATA ANALYSIS 

Bayesian estimation specifications

Random models were estimated with second order linearization and empirical Bayes Penalized 
Quasi-Likelihood methods, as was recommended for modeling spatial data16. A weakly informa-
tive prior with Inverse-Gamma (0.001, 0.001) distribution was used for the variance hyperparam-
eter and non-informative priors and normal distribution were used for fixed parameters based 
on maximum likelihood estimates. The posterior distributions of  parameters were estimated 
through Markov Chain Monte Carlo Simulations with Gibbs sampling and Metropolis-Hastings 
updates. Chain convergence was assessed using visual inspection based on graphics of  trace, ker-
nel density and autocorrelation function. Additionally, effective sample size was expected to be 
> 200. After a burn-in period of  500 iterations, an additional 5,000 iterations chain was sufficient 
to fulfill the requirements for the CM and CAR models but not for the SMM. 

The parameters for crude and adjusted spatial relations definition models with their 95% 
credible intervals (95%CrI) are presented and compared in terms of  proportional reduction 
(crude parameter– adjusted parameter)/crude parameter.

ESTIMATION OF GEOGRAPHIC DISPARITIES IN MORTALITY

Crude and adjusted early neonatal mortality rates (per 1,000 live births (LB)) were esti-
mated from intercepts. Geographic disparities in mortality were estimated from the variance 
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component and are presented as Median Rate Ratio (MRR) and Interquartile Rate Ratio (IqRR). 
They are two epidemiological measures of  heterogeneity proposed by social epidemiology17,18.

ESTIMATION OF RATE RATIOS AND RATE DIFFERENCES FOR INDIVIDUAL AND AREA-LEVEL VARIABLES

Rate Ratios were estimated from regression coefficients. Rate Differences were estimated 
from predictions for median differences against the reference category, and are expressed 
as deaths per 1,000 LB.

MODEL FIT AND SPATIAL AUTOCORRELATION

Model fit was assessed with three fit statistics: Deviance Information Criterion (DIC)19, 
effective number of  parameters20 and effective sample size21. The adequacy of  the defini-
tions of  spatial relations used to model spatial autocorrelation of  area-level residuals was 
evaluated with Moran’s I statistic. Three spatial patterns on residuals were defined as: clus-
tered, over dispersed or not relevant. 

Mixed-effects analyses were executed using MLwiN 2.34 (Bristol University, UK). Spatial 
autocorrelation analyses were executed using ArcMap 10.2.2 (ESRI, US).

ETHICAL CONSIDERATIONS

Approval for this study, protocol number 466/2015, was obtained from the research eth-
ics committee of  the Universidad CES, Medellin, Colombia. 

RESULTS

Table 1 shows the estimates of  geographic disparities with regard to mortality and rate 
ratios for individual and area-level variables for each spatial relations definition model. 

ESTIMATION OF GEOGRAPHIC DISPARITIES IN MORTALITY

Crude early neonatal mortality calculated from raw data was 4.7 deaths per 1,000 LB. 
The classic multilevel model estimated crude early neonatal mortality as 5.1 deaths per 
1,000 LB. Both SMM and CAR made different estimates of  5.2 and 4.7 deaths per 1,000 LB 
respectively. After adjusting for newborn sex, residential area type, and GDP, estimated mor-
tality rates were 2.2, 4.0 and 1.2 per 1,000 LB according to the CM, SMM and CAR models. 
This implies proportional reductions of  crude rates after an adjustment of  57%, 24% and 



ROJAS-GUALDRÓN, D.F.

494
REV BRAS EPIDEMIOL JUL-SET 2017; 20(3): 487-500

Table 1. Estimated rate ratios and epidemiological measures of inter-municipal heterogeneity (with 95% credible intervals) for early neonatal 
mortality according to each spatial relation definition, Colombia 2011-2014.

Definition of spatial relation between municipalities

Classical Multilevel Spatial Multiple Membership Conditional Autoregressive

RR (95% CrI) RR (95% CrI) RR (95% CrI)

Crude Adjusted Crude Adjusted Crude Adjusted

Sex

Femalea 1.0 1.0 1.0

Male 1.3 (1.2 – 1.3) 1.3 (1.2 – 1.3) 1.3 (1.2 – 1.3)

Residential area

Semi-urbana 1.0 1.0 1.0

Urban 1.5 (1.3 – 1.6) 1.4 (1.3 – 1.5) 1.5 (1.3 – 1.6)

Rural 1.4 (1.2 – 1.5) 1.3 (1.2 – 1.5) 1.4 (1.2 – 1.5)

Gross domestic productb

3,203.3 – 48,255.9a 1.0 1.0 1.0

502.5 – 3203.1 1.0 (0.8 – 1.2) 0.7 (0.5 – 1.1) 1.2 (0.8 – 1.8)

199.3 – 502.2 1.2 (0.9 – 1.5) 0.6 (0.5 – 1.0) 1.3 (0.9 – 1.8)

132.2 – 198.9 1.1 (0.9 – 1.4) 0.7 (0.5 – 1.1) 1.3 (0.9 – 1.9)

71.6 – 131.9 1.4 (1.1 – 1.7) 0.7 (0.5 – 1.0) 1.4 (1.0 – 2.1)

30.6 – 71.3 1.6 (1.3 – 1.9) 0.9 (0.7 – 1.4) 1.6 (1.1 – 2.4)

0.3 – 30.1 1.9 (1.6 – 2.3) 1.0 (0.8 – 1.7) 1.9 (1.3 – 2.9)

Mortality ratec 5.1 (4.8 5.3) 2.2 (1.9 – 2.7) 5.2 (4.4 – 6.2) 4.0 (2.6 – 5.0) 4.7 (3.9 – 5.8) 1.2 (0.9 – 2.1)

Median RR 2.0 (1.9 2.1) 1.9 (1.8 – 2.0) 12.1 (9.9 – 14.6) 10.3 (8.5 – 12.6) 4.7 (4.2 – 5.3) 4.5 (4.1 – 5.0)

Interquartile RR 5.2 (4.7 5.7) 4.7 (4.2 – 5.2) 405.0e 280.1f 42.6 (32.6 – 55.2) 38.3 (29.5 – 49.2)

Effective sample 640 418 150 96 449 475

Effective parameters 660 651 537 529 691 690

Deviance Information 154889 154619 155054 154765 154879 154602

Spatial pattern of residualsd Clustered Clustered Dispersed Dispersed Clustered Not relevant
aReference category; bUSD Millions; cPer thousand live births; dBased on Moran’s I Statistic; e(95%CrI 250.4 – 638.8); f(95%CrI 172.8 – 446.1); RR: Rate Ratio; 95%CrI: 95% 
Credible interval.
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74% respectively. The CAR and SMM models also showed greater uncertainty in credible 
intervals than the CM model for both crude and adjusted rates.

According to the CAR model crude-MRR, relative difference in mortality is higher than 
4.7 for half  of  the possible comparisons between municipalities. Crude-IqRR shows that 
for newborns residents of  the top 25% highest mortality municipalities, mortality is 42.6 
times higher than for newborns residents of  the bottom 25% lowest mortality municipali-
ties. Crude and adjusted MRR and IqRR were lower for CM than for CAR. Despite these dif-
ferences between models, the proportional reduction of  the geographic disparity measures 
after adjustment was similar: 4% for MRR and 10% for IqRR. The SMM model made sub-
stantially higher estimations for geographic disparity estimates and for proportional reduc-
tion after adjustment, 14% for MRR and 31% for IqRR, compared to both CM and CAR. 

ESTIMATION OF RATE RATIOS AND RATE DIFFERENCES FOR INDIVIDUAL AND AREA-LEVEL VARIABLES

The estimates of  the individual-level variable Rate Ratios were the same for all models. 
The estimated relative effect of  GDP categories varied between models according to Rate 
Ratios. Both CM and CAR identified a social gradient, but classical multilevel median esti-
mates were lower and credible intervals were narrower. SMM made an inconsistent esti-
mate compared to CM and CAR. 

Figure 2 shows the Rate Differences for municipal GDP categories (reference: 3,203.3 - 
48,255.9 USD million). For the area-level variable, the CM estimates were higher than the 

Figure 2. Estimated rate differences (with 95% credible intervals) between the area-level variable 
gross domestic product according to each spatial relation definition, Colombia 2011 – 2014.

CM: Classical Multilevel; SMM: Spatial Multiple Membership; CAR: Conditional autoregressive.
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CAR estimates, and they showed higher uncertainty. According to the median CAR esti-
mates, municipalities with a GDP lower than USD 30.1 million have 4.6 more early neo-
natal deaths per 1,000 live births than municipalities with a higher GDP. In municipalities 
with GDP categories USD 30.6 – 71.3 and 71.6 – 131.9 millions, the median rate difference 
compared to reference category was 2.9 and 1.7 deaths per 1,000 live births. The SMM esti-
mates are incoherent with CM and CAR, and show higher uncertainty.

Figure 3 shows the Rate Differences between newborn’s residential area types (reference: 
semi-urban). For the individual-level variable, the CAR estimates are higher than the CM, 
around 1 death per 1,000 live births. The SMM made a considerably higher estimate of  Rate 
Differences compared to both CAR and CM, and showed higher uncertainty. 

MODEL FIT AND SPATIAL AUTOCORRELATION

In terms of  model fit (Table 1), the CAR model showed the highest number of  effective 
parameters and the lowest DIC for both crude and adjusted models. The CAR also showed 
the highest effective sample size for the adjusted models, but not between crude models 
where the CM model showed the highest value. Spatial autocorrelation of  area-level resid-
uals was properly modeled in the CAR adjusted model, but not in the CAR crude model. 
Crude and adjusted model patterns of  area-level residuals were clustered for CM and dis-
persed for SMM.

CM: Classical Multilevel; SMM: Spatial Multiple Membership; CAR: Conditional autoregressive.
Figure 3. Estimated rate differences (with 95% credible intervals) between the individual-level 
variable residential area type according to each spatial relation definition, Colombia 2011-2014.
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DISCUSSION

The greatest difference between the three definitions of  spatial relations was observed 
for the area-level variance estimate, which is used to calculate MRR and IqRR—the epide-
miological measures of  geographic disparity. Differences can be explained by the spatial 
autocorrelation of  area-level residuals. CM underestimation of  geographic disparity may be 
explained by its lack of  a process to model spatially autocorrelated variability. SMM overesti-
mated the geographic disparity measures, because when it weighted the residuals (Figure 1, 
Equation 3), it produced dispersed residuals (beyond what was expected by chance). The CAR 
estimation of  geographic disparity measures can be considered the most appropriate, since 
its prior for the distribution of  residuals (Figure 1, Equation 6) produced spatially non-cor-
related residuals and showed the best model fit. Additionally, the CAR definition of  spatial 
relations is a horizontal (proximity) operationalization of  space22. The SMM definition of  
spatial relations is a vertical (hierarchy) operationalization that does not relate municipali-
ties to each other, but rather individuals to multiple municipalities. 

The similarity between the Rate Ratios estimated for sex and residential area type was 
expected as mixed-models estimates of  individual-level fixed effects are intra-cluster spe-
cific, and therefore are not affected by differences in the estimation of  area-level variance23. 
This is not the case for Rate Differences estimated for individual-level variables, which were 
obtained by prediction, a process affected by area-level variance24. A similar logic applies 
to area-level estimates of  Rate Ratios and Rate Differences, as fixed effects are cluster spe-
cific23. The differences observed between the CM and CAR models’ GDP Rate Ratios may 
be explained by the weighting applied to the mean of  the normal distribution assumed for 
the area-level residuals (Figure 1, Equation 6). 

Uncertainty differences in all parameter estimates also must be cautiously interpreted. 
Even though, in every single case, the CM model produced narrower credible intervals than 
the CAR, this can be explained by CM underestimation of  variance (as explained above). 
Ignoring autocorrelation leads to spurious certainty25. For the CM model, autocorrelation 
should be considered when constructing credible intervals. One alternative for maximum 
likelihood estimation is the method for calculating confidence intervals for Rate Ratios 
between geographic units in the presence of  spatial autocorrelation. This alternative was 
proposed by Zhu26.

It is important to highlight that even when the CM model showed lower model fit than 
the CAR, and produced spatially auto-correlated residuals, this model cannot be discarded. 
Two considerations should be made: 

1.	 as said earlier in this paper, the conceptual distinction between place and space must 
be carefully thought out6. Classical multilevel can be a more adequate model in some 
research scenarios where group membership is of  primary interest rather than spatial 
distribution; 

2.	 CAR implies the possibility of  adjacent units, which is more common in secondary 
data analyses as censuses or vital statistics registries. Other data sources such as health, 
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demographic surveys, or even primary data from complex sampling designs may 
not be adequate because they do not necessarily have adjacent territories. In those 
cases, the CM model still can be used, but conclusions must be confined to place 
interpretations and interpretation of  spatial effects should be avoided. 

Further research from an epidemiological point of  view is needed for a deeper under-
standing of  those effects in order to clarify the differential mechanism associated with space 
and place as geographic dimensions of  health. The main hypothesis proposed from these 
study results is that space and place, as geographic dimensions of  health, might behave 
in a similar fashion as age and cohort do as time dimensions of  health, where age-effects 
may be overlaid by cohort-effects27 leading to confounding. Space-effects may be over-
laid by place-effects but more research is needed to test this hypothesis and to provide a 
structural definition for bias. Further research from the point of  view of  biostatistics is 
also required. It is known28 that for datasets in which low variances are possible, inverse-
gamma prior yields an improper posterior distribution for the limit of  ε→0, making 
inferences very sensitive to the values of  ε. This is partly due to the complex dependence 
of  the variance marginal likelihood on the distribution of  data between area-level units. 
The CAR model has a more complex variance22 than CM and specific research on proper 
priors for it is necessary.

The public health applications of  spatial effects models are worth mentioning. Several 
papers using the definition of  spatial relations with the CAR model can be found for dis-
ease mapping and ecological analysis29-32, but their applications and comparisons for geo-
graphic disparities research with data at an individual level are scarce33 The main strength 
of  this paper is that the definitions of  spatial relations are performed in a common general 
framework which makes their comparison more straightforward. Also, differences in terms 
of  epidemiological measures, estimation, and potential confounding, rather than technical 
issues, are the main focus. 

This study has a number of  limitations:
1.	 The inclusion of  the CAR prior was not enough to properly model the spatial nature in 

the crude model. This is relevant for disease and mortality mapping, since it suggests 
that even when a proper spatial model is used to represent crude rates distribution with 
a map, spatial-nonstationarity may not be sufficiently modeled. According to findings 
that were not presented, even when adjusting mortality rates only for sex using the CAR 
model, the area-level residuals showed no spatial autocorrelation. However, improved 
model specification is needed in order to gain a greater understanding of  the spatial 
non-stationarity processes underlying spatial distribution of  mortality rates34; 

2.	 It is important to note that the poor performance of  the spatial multiple membership 
model could be due to the distribution of  weights among the neighborhood. As such, 
the impact of  weighting schemes in the SMM model fit must be explored in depth. 
In this regard, the CAR model has the advantage of  an unambiguous definition of  
weights, which is equal to one for adjacent municipalities, and to zero otherwise5. 
Additionally, the SMM chain convergence for 5,000 iterations was not optimal;
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3.	 Short Markov Chains were used because of the high computational demands of the Bayesian 
mixed effect models with the CAR and SMM structures, and few independent variables 
were considered. However, as the main purpose was to compare different definitions 
of  spatial relation in terms of  conceptual and technical aspects, this basic model was 
enough for illustrative purposes and had enough fit evidence and chain stability according 
to ESS, spatial autocorrelation of  residuals, and visual inspection of  chain convergence. 
The persistent spatial autocorrelation of  the residuals in CM could be diminished by 
including more covariates, but it is important to highlight that in spatial data modeling the 
spatial non-stationarity must not be considered as model misfit or noise, but rather as a 
main process of  relevance that should not be adjusted, but rather analytically considered4. 

CONCLUSION

The definition of  spatial relations between municipalities based on the conditional 
autoregressive prior showed the best performance according to both fit statistics and spa-
tial pattern analyses of  area-level residuals. The use of  the CAR model in the Bayesian 
mixed-effects framework, allows for the possibility to simultaneously: 

1.	 estimate individual-level probability of  death;
2.	 estimate mortality rates for geographic units;
3.	 estimate geographic disparity measures;
4.	 adjust those estimates for both individual and area-level variables, while properly 

considering spatial arrangement of  the geographic units. 

This approach diminishes ecological bias and avoids spatial misspecification in geographic 
disparities analyses. If  further research increases the validity arguments for this approach, 
it may be an important contribution to epidemiological design as an alternative to ecolog-
ical studies in the study of  geographic disparities in mortality. 
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