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The use of quantitative ultrasound (QUS) for the 
measurement of bone was first reported by Langton 

et al. in 1984. Since 1984, the use of QUS has expanded 
vastly, and it has been widely used for research and 
clinical purposes.1 The first ultrasound system repor-
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Resumen
En esta revisión sobre el Ultrasonido Cuantitativo (QUS) y 
su aplicación en la evaluación de la salud de los huesos, se 
analiza detalladamente la literatura disponible para conocer 
su papel y efectividad en la clínica cotidiana y en los pro-
gramas de investigación. El QUS ha probado ser útil para 
predecir fracturas, especialmente de la cadera. Sin embargo, 
la exactitud de la predicción depende del sitio de fractura 
que se desea evaluar, del sitio anatómico donde se realiza la 
medición y de los diferentes instrumentos. La correlación que 
existe entre  densitometría de rayos X (DXA) y QUS puede 
ser débil a moderada, porque ambos métodos determinan 
diferentes componentes de la masa ósea relacionados con la 
presentación de las fracturas. El resultado del QUS como el 
del DXA también es sensible a la edad, cambios relacionados 
con la menopausia, a factores de riesgo clínicos y de estilo 
de vida relacionados con la osteoporosis. Se ha demostrado 
que el QUS puede servir para monitoreo de las interven-
ciones terapéuticas, de manera menos sensible que el DXA, 
lo que limita su aplicación con este propósito. El DXA sigue 
siendo el estándar diagnóstico de oro para la osteoporosis; 
la capacidad del QUS para predecir fracturas, lo vuelve una 
buena alternativa en lugares y/o países donde el acceso a 
DXA tiene limitaciones.
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Abstract
This review of quantiative ultrasound (QUS) and bone health 
uses the current literature to summarise the clinical and 
research effectiveness of QUS. QUS has been demonstrated 
to have the ability to predict fracture, particularly at the 
hip. However, the magnitude of prediction is fracture-site, 
measurement-site and device dependent. The correlations 
between dual X-ray absorptiometry (DXA) and bone mineral 
density (BMD) are weak to moderate, resulting in different 
subjects being identified as being at risk of fracture by the two 
different methods. QUS is sensitive to age and menopause-
related changes and to clinical risk factors and lifestyle factors 
associated with osteoporosis. Whilst a limited ability of QUS 
to monitor therapeutic intervention has been demonstrated, 
this is still an area where it’s poorer precision, in comparison 
to DXA, results in limited applicability. Whilst DXA remains 
the gold standard for the diagnosis of osteoporosis, QUS may 
be of use for the prediction of those at risk of future fracture 
in areas where there is limited availability of DXA.
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ted by Langton used transmission mode ultrasound 
with a transmitting and a receiving transducer placed 
either side of the calcaneus, which was placed within 
a water bath.1 The calcaneus was chosen as a site for 
measurement since it is easily accessible, with the 
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medial and lateral aspects being relatively flat and pa-
rallel. It contains approximately 90% trabecular bone, 
which has a high metabolic turnover rate and a pattern 
of bone loss similar to the spine.2,3 The majority of 
subsequent ultrasound systems have been based upon 
this prototype, although dry systems which use ultra-
sound gel as a coupling medium instead of water have 
also been introduced. Much of the research done into 
QUS has therefore been performed using ultrasound 
measurements of the calcaneus. However, there have 
also been devices introduced that measure the patella, 
tibia, phalanges, radius and metatarsal, using a range of 
techniques including transmission and semi-reflection 
or axial transmission mode ultrasound.4-10

	 Dual X-ray absorptiometry (DXA) is currently the 
most widely used tool in the United Kingdom for the 
measurement of bone mineral density (BMD) and is 
widely regarded as the gold standard for the diagnosis 
of osteoporosis and fracture prediction. However, in 
many areas there are inadequate resources to meet the 
demand.11 Quantitative ultrasound offers a radiation-
free, inexpensive, non-invasive alternative to DXA.11,12 

What QUS measures

A number of authors have investigated the ability of 
QUS to measure the density and micro-architectural 
properties of bone.3,13-18 Results from in-vitro studies 
in bovine bone have found the ultrasound derived 
modulus of elasticity correlates strongly with values of 
bone breaking strength derived from static loading.19-21 
A number of studies have reported QUS parameters to 
be significantly associated with bone structure inde-
pendently of BMD.3,16-18,20 Whilst Mehta et al. reported 
ultrasound velocity and elasticity to be strongly connec-
ted with material elasticity as measured by mechanical 
testing.14 Broadband ultrasound attenuation (BUA) 
values have been reported to be dependent upon trabe-
cular orientation in vitro.22,23 However, high correlation’s 
in-vivo of r=0.75 to r=0.90 between BUA and BMD at the 
calcaneus using QUS and DXA with matched regions 
of interest have been reported,24,25 suggesting that QUS 
may reflect micro-architecture, but only to a small extent. 
Njeh et al. in a comprehensive review of whether QUS 
is dependent on structure concluded that ultrasound 
attenuation is due to structural parameters as well as 
dependent on density.15

Precision

QUS has demonstrated limited use in the monitoring 
of patients undergoing treatment, primarily due to its 
poor precision in comparison with DXA, leading to 

long time intervals being required to detect changes in 
bone.26-28 The precision of QUS is generally reported to 
be poorer than that of DXA. There are currently QUS 
devices available for measuring a range of anatomical 
sites including both predominantly trabecular and 
predominantly cortical bone sites. The calcaneus is a 
site with a high trabecular bone content, whilst some 
other sites of measurement are primarily cortical. When 
measuring the speed of sound (SOS), the coefficient 
of variation can appear particularly favourable for 
cortical sites due to the higher SOS in cortical bone 
compared to trabecular bone. When the coefficient of 
variation is calculated for cortical bone, division by a 
larger denominator is applied than for measurements 
in trabecular bone, giving the appearance of better 
precision at the cortical sites. Broadband ultrasound 
attenuation precision also appears to be poorer than 
its corresponding SOS precision in the same devices 
for the identical reason. As such, it is difficult to com-
pare precision results between ultrasound devices and 
different anatomical regions. In order to make a useful 
comparison the precision results need to be standar-
dised (standardised precision – SP) to the population 
standard deviation, signifying the error within the 
useful clinical range, of the individual device. Frost et 
al. found short term precision to range from 0.3-0.4% 
(SP 0.16-0.23) in the Hologic Sahara29 and 1.21-1.62% 
(SP 0.14-0.19) for the Osteometer DTU-1.30 Precision 
results for the Sunlight Omnisense have been reported 
to range from 0.2 to 1.48% depending on the anatomical 
site measured.31-33 
	 As a result of the poor precision of QUS in compa-
rison to DXA, optimisation of measurements to reduce 
precision errors is of utmost importance. Parametric 
imaging has been introduced on some calcaneal scan-
ners in an attempt to improve precision.30,34 In contrast 
to the fixed transducers of many calcaneal systems, the 
Sunlight Omnisense uses hand-held probes to enable 
measurement of multiple peripheral sites (figure 1).33 
This has the potential to influence the precision results, 
especially inter-operator precision. Operator training 
is therefore particularly important on this device to 
minimise precision errors. 

Age-related changes

QUS has been demonstrated to be sensitive to age-related, 
pubertal stage and menopause-related changes in 
bone.5,27,32,33,35-37 Multi-site quantitative ultrasound has 
demonstrated differing peak bone mass for different si-
tes, with the weight bearing sites tending to peak earlier 
and have a lower rate of bone loss postmenopausally.32,33 
Studies evaluating premenopausal age related changes 
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at the phalanges using the DBM-sonic have also found 
age-related bone loss premenopausally.4,5 

Correlation with DXA 

The correlation of QUS measurements with BMD has 
generally yielded weak to moderate correlations, par-
ticularly when peripheral QUS measurement sites have 
been correlated with axial BMD.7,33 Faulkner et al. found 
correlations ranging from 0.26-0.63 for calcaneal QUS 
and DXA of the spine, hip, forearm and whole body.38 
He et al found correlations ranging from 0.30-0.41 for 
calcaneal QUS parameters and whole body DXA and co-
rrelations ranging from 0.28-0.41 between calcaneal QUS 
and proximal femur BMD regions of interest (ROI’s).39 
Site matched correlations between BUA, velocity of 
sound (VOS) and BMD at the calcaneus have given 
better correlations ranging from 0.66-0.73.20 Some of the 
highest site matched correlations have been reported 
by Chappard et al. and Laugier et al. Chappard et al. 
reported high correlations in vivo of 0.78-0.90 between 
BUA and BMD at the calcaneus from their study using 
imaging QUS and DXA where site matched regions of 
interest were able to be correlated.24 In a similar study 
Laugier et al used imaging QUS and QCT in cadavers 
to investigate the relationship between site matched 
measurements of BUA and BMD and reported high 
correlations of r=0.75-0.88.25 

Fracture discrimination

Quantitative ultrasound measurements at the calcaneus 
have been demonstrated to be able to discriminate bet-
ween cases and controls with vertebral crush fractures 
and non-spine fractures.1,10,27,39-45

	 Some of the earliest strongest evidence to support 
the use of QUS for discriminating between osteoporotic 
fractures and controls has come from large prospective 
studies. The first of these was published in 1990, when 
Porter et al. measured 1 414 women over the age of 
69 who were in residential accommodation.46 Measu-
rements were performed at the calcaneus using the 
original Langton device. The women were followed up 
over a period of two years during which time a total of 
73 women suffered a hip fracture. The fracture group 
was found to have a lower BUA than the non-fracture 
group and were also found to be more active and have 
a lower cognisance score. Table I outlines a number of 
cross-sectional and prospective studies demonstrating 
the ability of QUS measurements at various sites to 
predict osteoporotic fracture. In all these studies, QUS 
is a good predictor or discriminator of hip or non-spine 
fractures.9,45,47-53 In a meta-analysis of QUS and fractures, 
Marín et al. reported the strength of association between 
QUS with non-spinal fractures to be similar to axial or 
peripheral BMD measurements. However, QUS was 
shown to be inferior to the association between BMD 
measured at the hip and hip fracture.54 Despite its abi-
lity to predict non-spine and hip fractures, the data to 
support the ability of QUS to predict vertebral fractures 
is variable. However, calcaneal QUS generally has better 
prediction and discrimination of vertebral fracture than 
other sites.27,33,55-64

Risk factors and secondary osteoporosis

Studies have found QUS to be sensitive to clinical risk 
factors for osteoporosis and secondary causes of os-
teoporosis. Frost et al. reported calcaneal QUS to be as 
sensitive as BMD measurements to clinical risk factors 
for osteoporosis.65 Stewart et al. also reported QUS 
measurements to be sensitive to clinical risk factors for 
osteoporosis, but reported the strength of the association 
to be dependent upon the type of QUS device and the 
variable measured.66

	 Other studies have reported QUS parameters to 
be decreased in subjects with renal disease,67,68 Crohn’s 
disease,69 primary hyperparathyroism,70-73 Rheumatoid 
arthritis74 and glucocorticoid use.6,75 Children and young 
adults with severe cerebral palsy and taking anticon-
vulsant therapy (with and without fractures) have been 
demonstrated to have reduced QUS measurements at 
the calcaneus.76 Damilakis et al. reported a negative 
correlation of SOS measurements at the radius and 
tibia with duration of type 1 diabetes in adolescents.77 
However, other authors have reported limited useful-
ness of QUS in patients with rheumatoid arthritis and 
with inflammatory bowel disease.78-80

Figure 1. Measurement of the third proximal phalanx 
using the Sunlight Omnisense
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Lifestyle factors

Physical activity has been demonstrated to have a posi-
tive effect on calcaneal QUS parameters.81-86 QUS mea-
surements have also been demonstrated to be reduced 
in smokers compared to non-smokers.87,88 

T-score equivalence with DXA

The World Health Organisation (WHO) criteria89 cannot 
be used with QUS to diagnose osteoporosis,90 although 
QUS can be useful as an indication of osteoporosis. 
A number of authors have reported site and device 
specific T-score equivalence to DXA.91-99 These studies 
demonstrate that a single diagnostic threshold for QUS 
is not appropriate and T-score equivalence to DXA is 
site- and device-specific. 

Monitoring therapy

The poorer precision of QUS in comparison to DXA has 
resulted in limited applicability for longitudinal use to 
monitor disease progression or therapeutic intervention. 
The international QUS consensus group report in 1997 
recommends further study of the use of QUS to monitor 
disease progression or response to therapy,100 whilst the 
National Osteoporosis Society in the UK at present does 

not recommend the use of QUS for monitoring treatment 
and states that DXA should be used instead.101 
	 Cross-sectional studies of QUS have demonstrated 
its ability to differentiate between patients treated with 
HRT compared to age-matched controls.102-104 These data 
are at variance with some of the research into the effect 
of HRT on calcaneal QUS parameters, which have found 
limited effects.10,105,106 However, Sahotal et al. found a 
positive effect of HRT at the calcaneus in a longitudinal 
study over a four year period, although the individual 
increases for BUA and SOS were not as great as found 
for lumbar spine and total hip BMD.26 
	 A number of longitudinal studies have demonstra-
ted a response of QUS to patients treated with bisphos-
phonates at the calcaneus and tibia.107-110 However, as 
a result of the poorer precision, the follow-up period is 
generally required to be longer than that of DXA.109

	 In conclusion, QUS has been extensively researched 
and has been demonstrated to have the ability to predict 
fracture, particularly at the hip. However, the predictive 
ability of QUS appears to be fracture-site, measurement-
site and device specific. The correlations between DXA 
and BMD are weak to moderate, resulting in different 
subjects being identified as being at risk of fracture by 
the two different methods. QUS is sensitive to age and 
menopause-related changes and to clinical risk factors 
lifestyle factors associated with osteoporosis. Whilst a 

Table I

Examples of studies investigating osteoporotic fractures and Quantitative Ultrasound*

Study	 Design	 # site	 QUS measurement	 QUS measurement site	 Age- adjusted relative risk / odds ratio

Heaney 1995	 1	 Vertebral	 VOS	 Patella	 2.11 (1.14-3.91)

Bauer 1995	 2	 Vertebral	 BUA	 Calcaneus	 1.8 (1.4-2.3)

Gluer 1996	 2	 Hip	 BUA	 Calcaneus	 1.9 (1.5-2.4)

Hans 1996	 1	 Hip	 BUA	 Calcaneus	  2.0 (1.6-2.4)

Bauer 1997	 1	 Hip	 BUA	 Calcaneus	 2.0 (1.5-2.7)

Mele 1997	 1	 Non-spine	 Ad-SOS	 Phalanx	 1.5 (1.1-1.7)

Pluijm 1999	 1	 Hip	 BUA	 Calcaneus	 2.3 (1.4-2.7)

Gnudi 2000	 1	 Non-spine	 SOS	 Radius	 3.69 (1.18-11.49)

				    Patella	 3.89 (1.53-9.90)

Huopio 2004	 1	 All	 SOS	 Calcaneus	 1.80 (1.27-2.56)

Bauer 2007	 1	 Hip	 BUA	 Calcaneus	 2.0 (1.5-2.8)
		  Non-spine	  		  1.6 (1.4-1.8)

* The QUS measurement parameter displayed is that which provided the optimum predictive power in the study outlined

1= prospective, 2= cross-sectional
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limited ability of QUS to monitor therapeutic interven-
tion has been demonstrated, this is still an area where 
its poorer precision, in comparison to DXA, results in 
limited applicability. Whilst DXA remains the gold stan-
dard for the diagnosis of osteoporosis, QUS may be of 
use for the prediction of those at risk of future fracture 
in areas where there is limited availability of DXA. 
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