Prevalencia de anticuerpos frente a parotiditis en niños y adolescentes a dos años de haberse introducido la vacuna SRP

Armando Méndez-Herrera, MCs,⁽¹⁾ Eloísa Arias-Toledo, MCs,⁽¹⁾ Miguel Sánchez-Alemán, DCs,⁽¹⁾ Ma. Leonidez Olamendi-Portugal, MCs,⁽¹⁾ Juan Ruiz-Gómez, MC, Viról,^{(1)†} José Luis Díaz-Ortega, MC, Epidemiól, Inmunól.⁽¹⁾

Méndez-Herrera A, Arias-Toledo E, Sánchez-Alemán M, Olamendi-Portugal ML, Ruiz-Gómez J, Díaz-Ortega JL. Prevalencia de anticuerpos frente a parotiditis en niños y adolescentes a dos años de haberse introducido la vacuna SRP. Salud Publica Mex 2018;60:72-77.

https://doi.org/10.21149/8138

Resumen

Objetivo. Evaluar la prevalencia de anticuerpos antiparotiditis en niños y adolescentes de México, a dos años de haberse introducido la vacuna SRP. Material y métodos. Se estudiaron 2 111 niños (1-9 años) y 2 484 adolescentes (10-19 años). Se evaluaron anticuerpos IgG con un kit comercial de ELISÁ indirecto. Resultados. La seroprevalencia fue 70.6% (IC95% 69.3-71.9) y resultó mayor en adolescentes (83.0%, IC95% 81.5-84.5) que en niños (56.0%, IC95% 53.9-58.11) (OR 3.83; IC95% 3.34-4.39, p=0.0000000). Los niños de 1 a 2 y de 6 a 9 años, que a partir de 1998 formaron parte del grupo blanco de vacunación vs parotiditis, tuvieron mayor seroprevalencia que el grupo de 3 a 5 años no vacunado. **Conclusiones.** La seropositividad en niños de 1 a 2 y de 6 a 9 años fue probablemente atribuible a vacunación durante 1998-2000 y la de otros grupos etarios a exposición natural relacionada con el tiempo transcurrido en cada cohorte de nacimientos hasta el reclutamiento al estudio.

Palabras clave: parotiditis; seroprevalencia; vacunación; niños; adolescentes

Méndez-Herrera A, Arias-Toledo E, Sánchez-Alemán M, Olamendi-Portugal ML, Ruiz-Gómez J, Díaz-Ortega JL. Antibody prevalence to mumps in children and adolescents at two years of the introduction of the MMR vaccine.

Salud Publica Mex 2018;60:72-77.

Abstract

https://doi.org/10.21149/8138

Objective. To assess the prevalence of mumps antibodies in children and adolescents of Mexico, two years after the introduction of the mumps-containing vaccine MMR. Materials and methods. Evaluation of IgG antibodies with a commercial kit of indirect ELISA. Results. 2 111 children (1-9 years) and 2 484 adolescents (10-19 years) were studied. The overall antibody seroprevalence was 70.6% (95% CI 69.3-71.9), being higher in adolescents (83.0%, 95%CI 81.5-84.5) than in children (56.0%, 95%CI: 53.9-58.11) (OR 3.83, 95%CI 3.34-4.39, p=0.0000000). Children 1 to 2 and 6 to 9 years who were part of the target group of mumps vaccination since 1998, they had higher seroprevalence than the group of 3 to 5 years unvaccinated. **Conclusions.** Seropositivity in children aged I to 2 and 6 to 9 years was probably attributable to vaccination during 1998-2000 and in other age groups to natural exposure related to time elapsed in each birth cohort until the study recruitment.

Keywords: mumps; seroprevalence; vaccination; children; adolescents

(1) Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública. Cuernavaca, Morelos, México.

Fecha de recibido: 18 de agosto de 2016 • Fecha de aceptado: 6 de octubre de 2017

Autor de correspondencia: José Luis Díaz Ortega. Instituto Nacional de Salud Pública. Av. Universidad 655, col. Santa María Ahuacatitlán. 62100 Cuernavaca, Morelos, México.

Correo electrónico: jdiaz@insp.mx

La parotiditis es un padecimiento globalmente endémico, causado por un virus de ácido ribonucleico (ARN) de cadena sencilla, perteneciente al género *Rubulavirus* y familia *Paramixoviridae*. En condiciones naturales sólo infecta a humanos; la fuente de contagio es la saliva de personas infectadas. El virus se transmite por vía respiratoria, replicándose en epitelio respiratorio, parótidas y glándulas salivales; en periodo de viremia puede localizarse en otros tejidos glandulares y en sistema nervioso central. El espectro clínico varía de infección asintomática (15-27%), a manifestaciones leves a moderadas, estimándose que entre 40 y 50% de los infectados presentan síntomas respiratorios no específicos.¹⁻⁷

En la época prevacunal la infección estaba ampliamente diseminada, ⁸⁻¹¹ encontrándose seroprevalencias por edad de 18 a 25% en menores de 5 años, de 50 a 52% en 8 a 10 años, de 70 a 80% de 15 a 16 años ^{9, 11} y 95% a los 20 años. ¹¹

La vacuna triple viral SRP contra sarampión, rubéola y parotiditis fue introducida en el Programa de Vacunación Universal (PVU) en 1998, bajo un esquema de dos dosis: la primera al año de edad y la segunda a los 6 años. ¹² Se han ensayado vías alternativas de aplicación de la vacuna SRP, como la vacunación por aerosol, y se han encontrado resultados de serorrespuesta satisfactorios a las cepas vacunales Leningrado Zagreb y Jeryl Lynn de parotiditis, ¹³⁻¹⁶ e insatisfactorios para la cepa vacunal actualmente en desuso Rubini. ¹⁷ La infección natural confiere inmunidad permanente, pero la atribuible a la vacunación podría ser de duración limitada (10 años con un sola dosis) o más prolongada con 2 dosis de vacuna. ^{7, 18-20}

Con la finalidad de determinar la prevalencia de anticuerpos IgG contra parotiditis en niños y adolescentes, a dos años de haberse introducido la vacunación universal, se realizó el estudio seroepidemiológico que se describe a continuación.

Material y métodos

Diseño

Estudio serológico transversal de la Encuesta Nacional de Salud 2000 (Ensa 2000).

Población de estudio

La Ensa 2000 se levantó en hogares de las ocho zonas geoeconómicas del país, y obtuvo información de estado

de salud actual y variables antropométricas y sociales en una muestra aleatoria de 4 595 niños y adolescentes de 1 a 19 años, cuyo estatus vacunal no pudo establecerse por carencia o confusión de datos en la Cartilla Nacional de Vacunación. Las muestras serológicas fueron almacenadas en el banco de sueros del Instituto Nacional de Salud Pública (INSP).

Método de muestreo

Se visitaron 43 479 hogares seleccionados por muestreo de conglomerados, probabilístico, multietápico y estratificado por lugar de residencia.²¹ Las áreas con población mayor o igual a 15 000 habitantes fueron consideradas urbanas y las menores rurales. La muestra fue estratificada por las ocho zonas geoeconómicas del país de acuerdo con la clasificación de Bassols Batalla que considera variables geográficas, económicas, sociales y de desarrollo productivo.^{22,23}

Métodos de laboratorio

Las muestras sanguíneas fueron centrifugadas y los sueros separados en alícuotas conservadas en nitrógeno líquido a -150 °C hasta su análisis en el laboratorio. Se realizó la determinación de anticuerpos IgG por un kit comercial de ELISA indirecta (Virion/Serion/ Dade Behring BEP III/BEP 2000), método con una sensibilidad de 99% y especificidad de 93.7%. Las unidades de densidad óptica se transformaron en unidades por mililitro (U/mL), con punto de corte de positividad >100 U/mL.²⁴

Análisis de la información

Se estimó la proporción de seropositividad y los intervalos de confianza de 95% (IC95%) por grupo de edad, pertenencia a los grupos blanco del PVU, lugar de residencia y zona geoeconómica. Para evaluar las variables asociadas con seropositividad, se estimó la razón de momios (OR) y el IC95%. Las comparaciones fueron realizadas con la prueba x², a un nivel p de significancia menor a 0.05. ^{25,26}

Consideraciones éticas

La encuesta se apoyó en los principios éticos para la investigación médica en humanos de la Declaración de Helsinki. Se obtuvo consentimiento informado y voluntario de los entrevistados, previa explicación del

ARTÍCULO BREVE Méndez-Herrera A y col.

contenido y propósitos de la encuesta, de los derechos que les asistían y la garantía de anonimato en la información proporcionada.²³

Resultados

Se obtuvo información de 4 595 individuos: 2 111 de 1 a 9 años y 2 484 de 10 a 19 años. La seroprevalencia global en los 4 595 participantes fue de 70.6% (IC95% 69.3-71.9).

Grupo de edad

Se encontraron diferencias significativas (p<0.001) entre la seropositividad en niños (56.0%, IC95% 53.9-58.11) y en adolescentes (83.0%, IC95% 81.5-84.5) (cuadro I), siendo mayor en adolescentes (OR 3.83; IC95% 3.34-4.39, p=0.0000000) (cuadro II). La seroprevalencia en niños de 3 a 5 años fue menor que en otros grupos (cuadro I). Considerando como referencia al grupo de 3 a 5 años, los

Cuadro I

FRECUENCIA DE SEROPOSITIVIDAD A PAROTIDITIS EN NIÑOS Y ADOLESCENTES EN MÉXICO, DE ACUERDO CON LAS CARACTERÍSTICAS SOCIODEMOGRÁFICAS DE LA POBLACIÓN ESTUDIADA. ENSA 2000

Características sociodemográficas	N= 4 595 n	% (IC95%)	p *
Grupo de edad (años)			
1-2	323	58.5 (53.1-63.9)	Todos los grupos
3-5	712	38.6 (35.0-42.2)	<0.001
6-9	I 076	66.7 (63.9-69.6)	
Subtotal	2	56.0 (53.9-58.11)	
10-14	1 521	81.4 (79.4-83.4)	1-9 vs 10-19 años
15-19	963	85.5 (83.2-87.7)	<0.001
Subtotal	2 484	83.0 (81.5-84.5)	
Sexo			
Hombre	2 199	67.7 (65.7-69.6)	<0.001
Mujer	2 395	73.2 (71.5-75.0)	
Área de residencia			
Urbano	2 263	71.4 (69.6-73.3)	0.222
Rural	2 332	69.8 (67.9-71.6)	
Zona geoeconómica			
Noroeste	725	72.1 (68.9-75.4)	Todas las áreas
Norte	731	68.4 (65.0-71.8)	0.014
Noreste	285	68.8 (63.4-74.2)	
Centro Occidente	703	68.8 (65.4-72.3)	
Centro Este	900	75.2 (72.4-78.0)	
Sur	484	66.3 (62.1-70.6)	
Este	323	71.2 (66.2-76.2)	
	444	70.3 (66.0-74.5)	

Cuadro II

FACTORES DE RIESGO ASOCIADOS CON SEROPOSITIVIDAD A PAROTIDITIS EN NIÑOS

Y ADOLESCENTES EN MÉXICO. ENSA 2000

Factores de riesgo	Seropositividad (N=4 595) n (%)	OR (IC95%)	p *
Grupo de edad (años)			
<1-9	2 (56.0)	1	
10-19	2 484 (83.0)	3.83 (3.34-4.39)	0.0000000
3-5	275 (38.6)	I	
1-2	189 (58.5)	2.24 (1.70-2.96)	0.0000000
6-9	718 (66.7)	3.19 (2.60-3.96)	0.0000000
Vacunación probable			
1-2	189 (58.5)	1	
6-9	718 (66.7)	1.42 (1.09-1.85)	0.0081658
Sexo			
Hombre	2 199 (67.7)	1	
Mujer	2 395 (73.2)	1.30 (1.14-1.48)	0.00005
Zona geoeconómica			
VI-II-III-IV	2 203 (68.1)	1	
VIII-VII-I-V	2 392 (72.8)	1.25 (1.10-1.43)	0.0005
Área de residencia			
Urbana	2 263 (71.4)	1	
Rural	2 232 (69.8)	1.08 (0.95-1.23)	0.250
* prueba χ²			

de 1-2 y de 6-9 tuvieron mayor probabilidad de ser seropositivos (respectivamente: OR 2.24, IC95% 1.70-2.96 y OR 3.19, IC95% 2.60-3.96), con diferencia significativa en ambos grupos p=0.0000000) (cuadro II).

Considerando a los niños de 1 a 2 años como referencia, los de 6 a 9 tuvieron mayor probabilidad de seropositividad (OR 1.42, IC95% 1.09-1.85, p=0.00816) (cuadro II). Los nacidos entre 1982 y 1990 tuvieron mayor seroprevalencia que los nacidos entre 1991 y 1994, con un nuevo ascenso en los nacidos entre 1998 y 1999. La mayor seroprevalencia se presentó en los nacidos entre 1982 y 1985 (85.5%), y la menor entre los de 1995 y 1997 (38.6%) (p<0.001).

Lugar de residencia y zona geoeconómica

No hubo diferencias significativas por área rural o urbana, pero sí por zona geoeconómica (*p*=0.014). La

región con la mayor seroprevalencia fue la Centro Este (75.2%) y la de menor fue la Sur (66.3%) (cuadro I). La seropositividad en las zonas geoeconómicas VIII-VII-I-V fue mayor que en las zonas VI-II-III-IV (OR 1.25, IC95% 1.10-1.43, p=0.0005) (cuadro II).

Discusión

El estudio realizado entre 1 y 2 años después de la introducción de la vacuna SRP muestra que la seropositividad en los grupos blanco del PVU fue mayor a la de los niños de 3 a 5 años, y que la seroprevalencia en los de 1 y 2 y de 6 a 9 fue probablemente atribuible a la vacunación durante 1998 y 2000 (cuadro II). La baja seroprevalencia en los grupos blanco en el periodo de transición del cambio de vacuna (1998-2000) podría atribuirse a que una proporción de los niños reclutados había recibido solamente vacuna de sarampión. Como

Artículo breve Méndez-Herrera A y col.

soporte a esta posibilidad, en otra muestra de la Ensa 2000, la seroprevalencia contra sarampión en el grupo de 1 a 9 años fue de 99.04%, ²⁷ mientras que en el presente estudio fue de 56.0% para parotiditis (cuadros I y II).

Se ha encontrado que el comportamiento creciente de los casos nuevos por edad en la época vacunal podría explicarse por brechas en grupos etarios que "escaparon" tanto a la infección como a la vacunación, o han recibido sólo una dosis de vacuna o presentado falla vacunal.^{7,18-20, 28, 29}

Los hallazgos podrían atribuirse a diferencias de exposición al virus y a periodos prolongados sin exacerbaciones epidémicas. 30,31 Aunque este estudio no permitió hacer estimaciones de falla vacunal, ésta se ha asociado con esquema de vacunación incompleto y con mayor carga viral ambiental por exposición intensa y persistente al virus en viviendas, escuelas y residencias estudiantiles; además, se ha sugerido que los anticuerpos inducidos por vacunación podrían no reconocer genotipos virales diferentes a los vacunales.^{7,18,19,32-34} Los resultados sugieren la conveniencia de realizar monitoreos periódicos de cobertura de vacunación y de riesgo de infección, y contar con un sistema de vigilancia de elevada calidad para identificar genotipos virales circulantes y riesgos de falla vacunal.

Declaración de conflicto de intereses. Los autores declararon no tener conflicto de intereses.

Referencias

- 1. Rubin S, Eckhaus M, Rennick LJ, Bamford CCG, Duprex WP. Molecular biology, pathogenesis and pathology of mumps virus. J Pathol. 2015;235(2):242-25. https://doi.org/10.1002/path.4445
- 2. Ternavasio-de la Vega HG, Boronat M, Ojeda A, García-Delgado Y, Ángel-Moreno A, Carranza-Rodríguez C, et al. Mumps Orchitis in the Post-Vaccine Era (1967 y 2009). A Single-Center Series of 67 Patients and Review of Clinical Outcome and Trends. Medicine. 2010;89(2):96-116. https://doi.org/10.1097/MD.0b013e3181d63191
- 3. Werner Ca. Mumps orchitis and testicular atrophy. I. occurrence. Ann Intern Med. 1950;32(6):1066-9. https://doi.org/10.7326/0003-4819-32-6-1066 4. Prinz W, Taubert HL. Mumps in pubescent females and its effect on later reproductive function. Gynaecologia 1969;167(1):23-27. https://doi.org/10.1159/000302156
- 5. Plotkin SA, Rubin SA. Mumps vaccine. In: Plotkin SA, Orenstein W, Offit P, eds. Vaccines, 5th ed. Philadelphia: WB Saunders, 2008:435-65.
- 6. Baum GB, Litman N. Mumps virus. In: Mandell GL, Bennett JE, Dolin R, eds. Principles and practice of infectious diseases, 5th ed. Philadelphia: Churchil Livingstone, 2000:1776-981.
- 7. ACIP. Prevention of measles, rubella, congenital rubella syndrome and mumps, 2013. Summary Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR. 2013;62(4):1-40.
- 8. Sosa-Martínez J, Lira MS, Benavides L. Investigación de anticuerpos inhibidores de la hemaglutinación del virus de la parotiditis epidémica en personas de diferentes edades. Bol Med Hosp Infant Mex. 1964;21:330-7.

- 9. Golubjatnikov R, Leppla L, Filloy L. Anticuerpos inhibidores de la hemaglutinación para sarampión, rubéola y parotiditis. Investigación de su prevalencia en una comunidad de la meseta de México. Salud Publica Mex. 1970;12(5):603-9.
- 10. Gutiérrez G, Ruiz-Gómez J, Bustamante M. Encuesta serológica en niños de la Ciudad de México. V. Investigación de anticuerpos contra la parotiditis. Salud Publica Mex. 1971;13(4):483-7.
- 11. Ruiz-Gómez J, Silva-Acosta C. Seroepidemiología del sarampión, rubéola y parotiditis en la República Mexicana. V. Parotiditis. Salud Publica Mex. 1978;20(1):27-31.
- 12. Consejo Nacional de Vacunación. Manual de Vacunación 2008-2009. Capítulo 4. Vacunas y toxoides. México: Secretaría de Salud, 2008;68-75. 13. Fernández de Castro J, Bennett JV, Gallardo-Rincón H, Alvarez y Muñoz MT, Partida-Sánchez LAE, Santos JI. Evaluation of immunogenicity and side effects of triple viral vaccine (MMR) in adults, given by two routes: subcutaneous and respiratory (aerosol). Vaccine. 2005;23(8):1079-
- 14. Díaz-Ortega JL, Bennett JV, Castañeda D, Arellano D, Martinez D, Fernandez de Castro J. Safety and antibody responses to aerosolized MMR II vaccine in adults: an exploratory study. World J Vaccines. 2012;2(2):55-60. https://doi.org/10.4236/wjv.2012.22008

84. https://doi.org/10.1016/j.vaccine.2004.08.018

- 15. Díaz-Ortega JL, Bennett JV, Castañeda-Desales D, Arellano-Quintanilla DM, Martínez D, Fernandez de Castro J. Booster immune response in children of 6-7 years of age, randomly assigned to four groups with two MMR vaccines applied by aerosol or by injection. Vaccine. 2014;32(29):3680-6. https://doi.org/10.1016/j.vaccine.2014.04.031
- 16. Bennett JV, Fernández-de Castro J, Martínez-Poblete R, García-Alcántara ML, Gallardo-Díaz E, Molina-Ángeles MA, et al. A new rapid and promising approach to aerosol immunization: inflatable bags and valved masks. Vaccine, 2009;27(34):4571-5. https://doi.org/10.1016/j.vaccine.2009.05.086 17. Díaz-Ortega JL, Bennett JV, Castañeda D, Valdespino-Gómez JL, Fernández de Castro J. Successful seroresponses to measles and rubella following aerosolized Triviraten vaccine, but poor response to aerosolized mumps (Rubini) component: Comparisons with injected MMR. Vaccine. 2010;28(3):692-8. https://doi.org/10.1016/j.vaccine.2009.10.083 18. Cohen C, White JM, Savage EJ, Glynn JR, Choi Y, Andrews N, et al. Vaccine effectiveness estimates, 2004-2005 mumps outbreak, England. Emerg Infect Dis. 2007;13(1):12-7. https://doi.org/10.3201/eid1301.060649 19. Kutty PK, McLean HQ, Lawler J, Schulte C, Hudson JM, Blog D, Wallace G. Risk factors for transmission of mumps in a highly vaccinated population in Orange County, NY, 2009-2010. Pediatr Infect Dis J. 2014;33(2):121-5. https://doi.org/10.1097/INF.0000000000000000 20. Livingston KA, Rosen JB, Zucker JR, Zimmerman CM. Mumps vaccine effectiveness and risk factors for disease in households during an outbreak in New York City. Vaccine 2014;32(3):369-74. https://doi.
- org/10.1016/j.vaccine.2013.11.021 21. Valdespino JL, Olaiz G, López-Barajas MP, Mendoza L, Palma O, Velásquez O, et al. Vivienda, población y utilización de servicios de salud. En: Encuesta Nacional de Salud 2000. Cuernavaca, Morelos: Instituto Nacional de Salud Pública, 2003:1-292.
- 22. Bassols-Batalla A. México: Formación de regiones económicas. Influencias, Factores y sistemas. 2ª ed. Ciudad de México, Instituto de Investigaciones Económicas de la Universidad Nacional Autónoma de México, 1983:43-71.
 23. Sepúlveda J, Tapia-Conyer R, Velásquez O, Valdespino JL, Olaiz-Fernández G, Kuri P, et al. Diseño y metodología de la Encuesta Nacional de Salud 2000. Salud Publica Mex. 2007;49(3):427-32. https://doi.org/10.1590/S0036-36342007000900015
- 24. Institut Virion\Serion GmbH. Serion ELISA classic Mumps Virus IgG/IgM. 2012 [citado 2016, febrero 19]. Disponible en: http://www.virionserion.de/en/products/serion-elisa-classic-kursiu/childrens-disease/mumps-virus.html
- 25. Londoño F. Metodología de la investigación epidemiológica. 5ª ed. Bogotá: Manual Moderno, 2014:112-27.

- 26. Vandenbroucke JP, von Elm E, Altman DG, Gotzsche PC, Mulrow CD, Pocock SJ, et al. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): Explanation and Elaboration. PLos Med. 2007;4(10):e297. https://doi.org/10.1371/journal.pmed.0040297 27. Ruiz-Gómez J, Valdespino JL, Olaiz-Fernández G, Arias-Toledo E, Sepúlveda J. Encuesta serológica nacional del sarampión en niños: evidencias para su eliminación. Salud Publica Mex. 2007;49 (supl 3):S370-6. https://doi.org/10.1590/S0036-36342007000900008
- 28. Kutty PK, Kruszon-Moran DM, Dayan GH, Alexander JP, Williams NJ, Garcia PE, et al. Seroprevalence of antibody to mumps virus in the US population, 1999–2004. J Infect Dis. 2010;202(5):667-74. https://doi.org/10.1086/655394
- 29. Santacruz-Sanmartín E, Hincapié-Palacio D, Ospina MC, Perez-Toro O, Bernal-Restrepo LM, Buitrago-Giraldo S, et al. Seroprevalence of mumps in an epidemic period in Medellín, Colombia. Vaccine. 2015;33(42):5606-12. https://doi.org/10.1016/j.vaccine.2015.08.088

- 30. Anderson RM, May RM. Infectious diseases of humans. USA: Oxford Science Publications, 1991:12-24.
- 31. Fine PEM, Mulholland K. Community immunity. In: Plotkin SA, Orenstein W, Offit P, eds. Vaccines, 5th ed. Philadelphia: WB Saunders, 2008:1573-92.
- 32. Mackenzie DG, Hallam N, Stevenson J. Younger teenagers are also at risk of mumps outbreaks. BMJ 2005;330:1509. https://doi.org/10.1136/bmj.330.7506.1509
- 33. Rau CJ, Danovaro-Holliday MC. Letter to the Editor. Re: Mumps vaccine effectiveness and risk factors for disease in households during an outbreak in New York City. Vaccine. 2015;33(29):3273. https://doi.org/10.1016/j.vaccine.2014.09.005
- 34. Del Valle A, García AA, Barrón BL. Detection of mumps virus genotype H in two previously vaccinated patients from Mexico City. Arch Virol. 2016;161(6)1639-44. https://doi.org/10.1007/s00705-016-2770-6