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Abstract
Objective. To perform a systematic review of the main epi-
genetic aberrations involved in non-small cell lung carcinomas’ 
(NSCLC) diagnosis, progression, and therapeutics. Materials 
and methods. We performed a systematic review of the 
scientific literature on lung cancer epigenetics, focusing on 
NSCLC. Results. Several advances in the molecular study 
of classical epigenetic mechanisms and massive studies of lung 
cancer epigenome have contributed relevant new evidence 
revealing that various molecular complexes are functionally 
influencing genetic-epigenetic and transcriptional mechanisms 
that promote lung tumorigenesis (initiation, promotion, 
and progression), and are also involved in NSCLC therapy-
resistance mechanisms. Conclusion. Several epigenetic 
complexes and mechanisms must be analyzed and considered 
for the design of new and efficient therapies, which could be 
fundamental to develop an integrated knowledge to achieve 
a comprehensive lung cancer personalized medicine.

Keywords: non-small cell lung cancer; epigenetics; biomark-
ers; DNA

Resumen
Objetivo. Realizar una revisión sistemática y estructurada 
de las principales aberraciones epigenéticas involucradas en 
el diagnóstico, progresión y terapia del cáncer pulmonar de 
células no pequeñas (CPCNP). Material y métodos. 
Revisión sistemática de literatura científica sobre epigené-
tica del cáncer pulmonar del grupo CPCNP. Resultados. 
El estudio de los diversos mecanismos epigenéticos y su 
impronta epigenética en el epigenoma del cáncer pulmonar 
han arrojado nuevas evidencias a nivel biológico, biomédico y 
médico-clínico del impacto que los mecanismos epigenético-
transcripcionales promueven de manera activa y reversible 
sobre los procesos de tumorigénesis, progresión histopato-
lógica y mecanismos de resistencia a la terapia oncológica 
pulmonar. Conclusión. Deben analizarse diferentes com-
plejos y mecanismos epigenéticos para el estudio y diseño de 
esquemas nuevos y eficaces de terapia epigenética, los cuales 
podrían ser fundamentales para desarrollar un conocimiento 
integral en el desarrollo de la medicina personalizada en el 
cáncer pulmonar del grupo CPCNP.

Palabras clave: carcinoma de pulmón de células no pequeñas; 
epigenética; biomarcadores; ADN
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Lung cancer is the most lethal malignant disease 
worldwide, it is expected that the number of cases 

of this disease will increase in the next few years, par-
ticularly in developing countries.1 Lung cancer has been 
classified in two major histopathological groups: small 
cell lung carcinomas (SCLC) and non-small cell lung 
carcinomas (NSCLC) that represents 80 to 85% of the 
total lung cancer cases. According to its histology, the 
NSCLC can be classified in: large cell carcinomas (LCC) 
10%, squamous cell carcinomas (SCC) 40%, and adeno-
carcinomas (AD) 40%.2 NSCLC has also been grouped 
at the molecular level, according to a new genetic ex-
pression signature based on 42 differentially expressed 
genes (with a fold change >2.6) significant statistically 
(t test, P value <10−18, with FDR <10−16), highlighting 
in other propose genes: high molecular weight keratins 
(KRT), NKX2-1 (TITF1), TP63, and DSG3 (desmoglein 
3), as a part of the new molecular classification for the 
human NSCLC-histological group.3 Nevertheless, in the 
pulmonary oncological field, clinical oncological prog-
noses and therapies are based on the relevant functional 
driver genes associated with the biology of lung cancer, 
particularly: EGFR-gene mutations, EML4-ALK-genetic 
fusions,4 and others oncogenic drivers as: BRAF, HER2, 
ROS1, RET, FGFR1, and PI3K, in human NSCLC.5
	 However, despite marginal advances in the diag-
nosis and oncological therapies, the clinical outcome 
and prognosis have room to improve significantly for 
patients. Therefore, the treatment specifically addressed 
to genetic-epigenetic targets for the applied lung transla-
tional oncological medicine is a priority for translational 
oncological medicine.
	 In this topic, high-performance epigenomic strate-
gies have revealed a new picture of the complexity of 
the malignant cellular and molecular mechanisms of 
lung cancer, as well as their potential application as 
biomarkers, and NSCLC therapies.
	 Based on the definition of the National Cancer Insti-
tute (NCI, Dictionary of Cancer Terms), a biomarker is “a 
biomolecule identified in fluid-tissues as blood, and other 
body-fluids, as well as solid tissues, as a sign of a normal 
versus abnormal physiological condition and/or disease-
processes”.6 The concept of Epigenetic-biomarkers has 
been incorporated in the personalized medicine as cancer-
epigenetic drugs and/or epigenetic-target therapies. 
Therefore, tumor-biomarker functional and clinically may 
be used, as a determinant diagnostic and/or prognostic 
aggressive-malignancy guidance in cancer biology and 
clinical oncology research,7 where epigenetic biomarkers 
will be widely used in lung tumor biology, oncological 
prognosis, overall survival, early-late recurrence, and/
or therapy response in human NSCLC.8-10

Epigenetics in NSCLC

Most cases of NSCLC exhibit genetic alterations that 
have been widely described; however, a small number 
of NSCLC cases have been identified without genetic 
mutations and/or chromosomal-genomic aberrations in 
the fundamental oncological driver genes. The study of 
the three levels of the human cancer epigenome (DNA 
methylation, histone code modifications and nucleosome 
positioning) has allowed us to propose new molecular 
pathways in the hereditary epigenetic marks that ac-
company transient-reversible and hereditary permanent 
transcriptional states under normal conditions, embry-
onic development, non-malignant diseases and scenarios 
of malignant diseases.11

	 The first lung cancer epigenetic studies carried out 
by Issa and colleagues and Baylin and Herman between 
1996 and 1998, reported emerging epigenetic biomark-
ers (Estrogen Receptor Gene-Promoter Methylation) 
in both, environmental carcinogenic lung cancer mice 
models, and lung carcinomas from smokers and never-
smokers patients.12 Some of which have been proposed 
as early epigenetic events (increased DNA methyl-
transferase activity) associated with lung carcinogen-
esis promotion and primary lung tumor progression.13 

Where DNA methylation aberrations on driver-Tumor 
Suppressor Genes (p16INK4a) have been proposed in 
NSCLC (lung precursor lesions hyperplasias, adenomas, 
AD and SCC) as early epigenetic biomarkers with po-
tential using in lung cancer diagnosis.14,15 In addition, 
two decades ago, several emerging epigenetic disorders 
have been described and classified at DNA methyla-
tion, covalent histone modifications, and nucleosome 
remodeling levels on several oncogenic driver-genes 
(p16, H-Cadherin, RARb, APC, MGMT, RASSF1A, 
CDKN2A, SHOX2, etc.), persistently associated to lung 
cancer diagnosis and prognosis.16

	 Moreover, in the last decade several oncological-
research efforts have addressed large scale descriptive 
epigenetic studies, well-known as cancer epigenomics, 
into identify massive spreading altered epigenetic marks 
through -modulated-regulated- cancer epigenome, well 
known as functional epigenomics, into identify epigen-
etic-targets impacting on lung tumorigenesis, with its 
translational medicine implications.17 On that subject, 
some new proposed molecular mechanisms involved 
in lung cancer histopathological progression, prog-
nosis and efficient oncological-therapeutic protocols, 
have been proposed in NSCLC patients, using others 
epigenetic-inhibitors as Histone Deacetylases-inhibitors 
including Vorinostat plus cisplatin and paclitaxel, con-
solidating an epigenetic therapeutic field in NSCLC.18
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Epigenetics therapeutics in NSCLC

Based on the reversible nature of epigenetic modifica-
tions of methylated DNA and post-translational modi-
fications of histones, some therapeutic strategies have 
been developed reversing malignancy in the cancer 
initiation, promotion and progression processes, con-
solidating the use of epigenetic biomarkers in the course 
and diagnosis of the malignant diseases.19-21

	 Three identifiable major molecular epigenetic pat-
terns have been described at DNA epigenetic level: a) 
DNA global-hypomethylation, b) Region-specific DNA 
hypermethylation, and c) Genome-wide hypometh-
ylation. These epigenetic aberration-modifications at 
epigenome-wide level, have led us to identify dys-
functional abilities on a) cellular-genetic expression 

patterns, b) physiological homeostasis of the cellular 
proliferation, and c) cellular-differentiation control. All 
of these cellular-disabilities, additionally respond to a 
higher functional complexity, affect chromatin remodel-
ing complexes, nucleosome-assembling, histone code 
patterns, and epigenetic modulators epigenome-occu-
pancy (figure 1).10 Some of these mechanisms have been 
proposed in lung-malignant diseases controlling tran-
scription states, defining genetic expression levels and 
patterns, producing aberrations in the tumor-biomarker 
expression signatures through malignant tumorigenesis 
and histopathological progression compromising lung 
tissue at early and/or late NSCLC stages.16

	 Based on this background, targeted-epigenetic ther-
apeutic protocols have been proposed as strategies that 
reactivate and/or regulate transcriptional activity, by 

Figure 1. Epigenome depicture model: Chromatin remodeling complexes, nucleosome position, histone 
code patterns, and DNA methylation patterns in driver gene-promoter sequences. Probable epigenetic 
aberrations in modulated promoter-sequences of gene-drivers and/or epigenetic biomarkers functional-biological, and clinically 
involved in non-small cell lung carcinomas (NSCLC), tumorigenesis, histopathological progression, prognosis and therapy response 
(additional information in table I and II).
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inhibiting epigenetic enzimes,9 controlling oncogenes, 
tumor suppressor genes, and specific gene-signatures 
for each histopathological and molecular subtypes in 
NSCLC.3 Thus, it is expected that in the near future there 
will be a better knowledge of the lung cancer epigenome 
(figure 1), and that these efforts will allow the develop-
ment of therapies based on epigenetic drugs.17

	 Additional epigenetic-therapeutic strategies, have 
been based on the functional activity of the dynamic 
structure of chromatin, but centered on the enzymatic 
capacity of energy-dependent protein complexes lead-
ing to covalent post-translational modifications on the 
nucleosome, modulating several cellular processes, such 
as transcription, gene expression, as well as DNA recom-
bination, replication and DNA damage repairing.22,23

	 In this regard, some investigations have been con-
ducted, using azacitidine (30-40 mg/m2/d) plus Entinostat 
(7 mg on days 3 and 10, each 28-day cycle) in phase I-II 
clinical trials with NSCLC patients.24 On these studies, gene-
promoter hypermethylation status has been proposed as a 
quantitative negative prognostic factor (P < 0.001), based on 
the quantifiable DNA-Methylation on driver gene-promoter 
sequences, as APC, RASSF1A, CDH13, and CDKN2A 
in stage I and III NSCLC patients.8
	 Additionally, in NSCLC, some mutations have been 
identified in genes codifying for the enzymatic subunits 
of the four classes of chromatin remodeling complexes 
(SWI/SNF, ISWI, CHD y INO80), such as ARID1A, BRG1, 
ARID2 and CHD7 (table I).25-48 Other mechanisms of re-
sistance identified include altered function of SMARCE1 
subunits of the SWI/SNF1 group, which conduce to over-
expression of EGFR and contributing in resistance to in-
hibitors of MET and ALK in NSCLC;49 the overexpression 
of BRG1 and BRM in the cisplatin toxicity,50 or doxorubicin 
chemo-resistance mechanisms associated with the expres-
sion of the subunits SMARCB1 and SMARCA4 (BRG1) in 
NSCLC cells.51 This findings suggest the importance of 
the three main epigenetic mechanisms, DNA methylation, 
histone code modifications and chromatin remodeling 
complexes in cancer progression (table I and II).52-58

	 Along with, overexpression of BRG1 and BRM in 
the cisplatin toxicity,50 or doxorubicin chemo resistance 
mechanisms associated with the expression of the 
subunits SMARCB1 and SMARCA4 (BRG1) in front to 
NSCLC cells.51 All of that, suggesting the importance of 
the three main epigenetic mechanisms DNA methyla-
tion, histone code modifications and chromatin remod-
eling complexes in cancer progression and potential 
new oncological therapeutic strategies in NSCLC, all 
of which have been shown in table I and table II.

DNA gene promoters methylation in 
NSCLC

Based all above-mentioned, in NSCLC cells as well 
NSCLC solid tumors, several epigenetic spreadable al-
terations-aberrations have consistently been described, 
highlighting genome-wide DNA hypomethylation, and 
gene-promoter specific sequences DNA-hypermethyl-
ation.59,60

	 Alterations in DNA-sequences methylation located 
at 5’ position in the cytosine base in a CpG dinucleotide 
context, develop a pathophysiological condition in can-
cer cells known as hypermethylated “CpG islands”, in 
almost all NSCLC cases, these CpG islands are located 
mainly in tumor suppressor genes (Eg., O6-methyl-
guanine-DNA-mehtyltransferase MGMT) codifying 
for a DNA-repair protein, which has a pivotal role for 
DNA-repairing, and cellular cycle control mechanisms.61 

Thus, DNA hypermethylation at specific gene promoter 
sequences represents an important mechanism for loss 
of genetic function for several NSCLC histopathological 
types. In accord to two-hit model from Knudson, the 
phenotypic consequence of loss of the tumor-suppressor 
gene function, is not seen unless both alleles of the tu-
mor suppressor genes are inactivated. In NSCLC there 
have been described gene mutations for one genetic 
allele, meanwhile, an additional allele is epigenetic 
silenced by hypermethylation. As functionally occurs 
for O6-MGMT protein removing carcinogen-induced 
O6-methylguanine adducts, resulting in G-A transition 
mutations in several driver-genes, such as p53 (P53) and 
K-RAS, promoting malignant abilities.61 In advanced 
NSCLC epigenetic inactivation events by DNA meth-
ylation precede to RAS genetic alterations, as well as in 
lung pre-malignant lesions, with a significant impaired 
overall survival in NSCLC patients.62 
	 In addition, tumor suppressor genes epigenetically 
disrupted are often found in genome-wide regions, near 
of chromosomal deletions; whose genetic deletions 
cause loss of heterozygosity (LOH). On that epigenetic 
inactivation of important genes as, RASSF1A,63 and hy-
permethylated in cancer 1 (HIC1) gene (encoding a Zinc 
Finger Transcription Factor, at Chr:17p13.3) are usually 
inactivated by hypermethylation mechanisms in several 
lung malignant diseases.64 Nevertheless, recently it was 
proposed that higher-frequency LOH regions not caused 
by genetic-mutation mechanism, is a principal candidate 
tumor-suppressor gene disability mechanism, where 
no-additional mutated genes have nearly been found.30 
However, 5-methylcytosine as per se known mutagenic 
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Table I
Alterations in chromatin remodeling complexes in NSCLC

TRITHORAX Complex
SWI/SNF Subunits

Gene involved and alteration Study samples Reference(s)

SMARCB1 Mutated in lung AD patients, associated with wood smoke exposure: Mutation 
Frequency 73.7% (14/19).

Prospective cohort: patients diagnosed with lung 
AD with WSE from 2014-2017 at the Thoracic 
Oncology Clinic of the Instituto Nacional de Can-
cerología, México.
n=19. 

(25)

BRM (SMARCA2) Decreased expression in NSCLC samples (6 of 60 samples, ~10%) and human 
NSCLC lines (6 of 20, ~30%). 
BRM acts as tumor suppressor protein in lung cancer.

NSCLC samples from lung tumor samples (Stage 
I-IIIA) banked at the University of North Caroline 
from 1997-1999, n=60.
Human NSCLC cell lines derived from lung AD. 
n=20.

(26)

BRM (SMARCA2) Altered cellular localization of BRM is a useful marker for NSCLC prognosis:
Positive nuclear BRM localization is associated with a favorable prognosis in SCC 
and AD patients with 5 year-survival (53.5%)
Membranous BRM localization is associated with a poorer prognosis in AD patients 
with 5 year-survival (16.7%).

Tissue microarray composed of 300 NSCLC cases 
selected from the Armed Forces Institute of Patho-
logy Archive, Washington, DC.
n=150 AD.
n=150 SCC.

(27)

BRG1 (SMARCA4) Concomitant loss of BRG1/BRM expression is a poor prognostic indicator in 
NSCLC patients. 
Nuclear Co-expression of BRG1/BRM correlates with a better prognosis in 
NSCLC.

Prospective cohort: median 36-month follow-up 
period.
Tumor samples banked at the University of North 
Carolina.
The specimens were derived
from patients with stage I–IIIA, NSCLC.
n= 6 patients with BRG1/BRM-negative tumors.
n= 54 patients with BRG1-positive tumors with 
stage I, II, and III.
NSCLC cases selected from the Armed Forces 
Institute of Pathology Archive, Washington, DC.
n=15 of 28 M-BRM positive NSCLC.

(26, 27)

BRG1 (SMARCA4) SMARCA4 gene promoter hypermethylation does not occur in primary lung 
tumors or cancer cell lines. Somatic point mutations of the SMARCA4 gene are 
present in a small subset of lung tumors and lung cancer cell lines. 

NSCLC patients at The Johns Hopkins University 
Scholl of Medicine.
n= 20 lung primary tumors with LOH on Chr:19p. 
n=52 lung primary tumors. 

Human lung cancer cell lines from American Type 
Culture Collection (ATCC, Rockville, MD) n=10.

(28-31)

BRG1 (SMARCA4) Decreased expression in lung cancer cell lines and lung primary tumors. 
Genetic expression restoration of BRG1 in H1299 lung cancer cell line, identified 
BRG1 target genes (CYP34A and ZNF185), using cDNA microarray analysis. 

Tumor tissues from 27 lung cancer patients, 
provided by the CNIO Tumor Bank Network, 
(Madrid, Spain), by collaboration with the Hospital 
Universitario 12 de Octubre.
n=13 SCC. 
n=17 AD.

H1299 lung cancer cells from ATCC and cDNA 
microarray (CNIO OncoChip). 

(32)

BRG1 (SMARCA4) BRG1 loss altered cellular morphology and increased tumorigenic potential in 
NSCLC. Inactivation of BRG1 in NSCLC were associated with variations in chro-
matin structure, including differences in nucleosome positioning and occupancy 
surrounding transcriptional start sites of key cancer-associated genes.

Human NSCLC and NSCLC cell lines from the 
ATCC. Agilent micrroarray analysis.

(33)

BRG1 (SMARCA4) Reduced expression of SMARCA4 was associated with poor prognostic and 
overall survival. Lower expressed SMARCA4/BRG1 associated with increased 
benefit from cisplatin-based chemotherapy in resectable NSCLCs.

SMARCA4-decificient lung AD shows a morphological diversity and genotypic 
spectrum, with absence of expression of TTF1 in the presence of expression 
of HepPar-1, and absence of EGFR-driver mutations. These features should be 
recognized as a distinct new subtype of NSCLC.

Patient cohorts: The Director´s Challenge Study, 
University of Michigan and clinical outcomes in 
NSCLC from multiple institutions, Memorial Sloan-
Kettering Cancer Center, the H. Lee Moffitt Cancer 
Center and Research Institute, the Dana-Ferber 
Cancer Institute, and the National Center Institute 
of Canada Clinical Trials Group.
n=440.

NSCLC cases diagnosed at the Institute of Patho-
logy, University Hospital of Erlangen, Germany.
n=20.

(34)

(35)

(continues…)
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BAZ1B (WSTF) WSTF is an oncoprotein in lung cancer, its overexpression promotes prolifera-
tion, colony formation, migration and invasion of lung cancer cell lines A549 and 
H1299. WSTF overexpression also promotes tumor growth of lung cancer cells 
in mouse xenograft models.

Human lung cancer cell lines: A549, and H1299 
from the Type Culture Collection of the Chinese 
Academy of Sciences, Shanghai, China. Male athymic 
nude mice with four weeks old.

(36)

NuRD Complex
CHD Subunits

Gene involved and alteration Study samples Reference(s)

RBBP7 (RbAp46) RbAp46 is a prognostic biomarker in NSCLC and involved in lung cancer cellular 
migration. 

Cancer cell lines stablished from a 64- year-old 
man with a poorly differentiated lung AD (CL1-0 
and CL1-5). Department of Internal Medicine 
National Taiwan University Hospital, Taipei, Taiwan, 
Republic of China.
Paired surgically resected lung carcinomas, clinical 
staging I-IV from patients of Chang Gung Memorial 
Hospital:
n=106 AD.
n= 48 SCC.

(37)

MTA2 MTA2 are distributed in both nuclei and cytoplasm in NSCLC cells. Nuclear MTA2 
distribution was detected in 66.4% (n=148) of NSCLC cases, and was correlated 
with advanced TNM stage, tumor size, and lymph node metastasis. Cytoplasmic 
MTA2 status was not associated by age, gender, tumor stage, histology, grade, 
and lymph node metastasis.
Nuclear MTA2 expression is correlated with poor overall survival. 

Patient cohort’s NSCLC tissue cases obtained 
between 2000 and 2005 from Hunan Providence 
People´s Hospital, China.
n=223.
NSCLC cell lines n=2.

(38)

HDAC1 HDAC1 expression is associated with the histopathological progression and 
prognosis of lung cancer. HDAC1 is highly expressed in NSCLC cell lines, and 
HDAC1 knockdown inhibits cellular invasion, inducing apoptosis in NSCLC cells.

Meta-analysis study. Original articles in Embase, Web 
of Science, PubMed. December 2016

Human NSCLC cell lines A549, H1299 and LK2 
from ATCC (Manassas, VA, USA).

(39)

(40)

HDAC2 Overexpression of HDAC2 in lung cancer tissues.
HDAC2 has oncogenic properties in human lung cancer cell lines.

Human NSCLC cell lines A549, NCI-H358, and 
NCI-H460 from ATCC.

(41, 42)

CHD4 
(Mi-2β)

Young never-smoker patients with lung AD harbored germline mutations in 
CHD4 (rs74790047, p.D140E). 
The CHD4 susceptibility loci has been identified to be associated with lung 
cancer risk.

Cohort never-smoker Chinese patients diagnosed 
with lung AD, at 45 years or younger. From West 
China Hospital From 2011 to 2016.
n=36.

(43)

POLYCOMB Complex
Polycomb Repressive 

Complex (PRC)
Gene involved and alteration Study samples Reference(s)

PRC2/
Subunit Enhancer Zeste 
Homolog 2 (EZH2)

Deletion and inactivating mutations of EZH2 gene is present in 14% (33/230) of hu-
man ADC samples. EZH2 gain/amplification is prevalent in 42% (97/230) of ADCs.

Human lung AD samples from Cancer Genome 
Atlas Research (TCGA).
 n= 230.

(44)

PRC2/
Subunit Enhancer Zeste 
Homolog 2 (EZH2)

EZH2 is highly expressed in SCCs and NSCLC brain metastases. EZH2 expression 
correlated with tumor progression and prognosis of NSCLC

Cohort from patients who underwent surgical 
resection between 1999 and 2006 at The Uni-
versity of Texas MD Anderson Cancer Center 
(Houston, Texas).
n= 221 SCC,
n= 320 AD
n= 36 NSCLC (9 SCCs and 27 AD) with brain 
metastasis.

(45)

PRC2/
Subunit Enhancer Zeste 
Homolog 2 (EZH2)

EZH2 promotes lung cancer progression through transcriptional repression of 
the metastasis suppressor gene TIMP-3 in NSCLC.

Cohort from patients with primary NSCLC diag-
nosed at the Department of Thoracic Surgery of 
Nanjing Chest Hospital between 2005 and 2008.
n= 60.

(46)

PRC1/
Subunit
BMI-1

BMI1 is overexpressed in stage III and IV tumors. BMI overexpression has been 
associated with progression of NSCLCs.

Human tumor samples NSCLC from 1st De-
partment of Surgery, Medical Faculty, Palacky 
University, Olomouc, Czech Republic, between 
1996 and 2001.
n= 179: n= 104 (stage IIIa), n=20 (stage IIIb) and 
n=21 (stage IV).

(47)

(continuation)

(continues…)
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nature, has been involved promoting tumorigenicity 
(G-T transversion mutations), caused by spontaneous 
hydrolytic deamination induced by tobacco carcinogens 
(benzo(a)pyrene diol epoxide), associated with tobacco 
consumption background in NSCLC patients.65

	 At least 50% of all inactivating point-mutations at 
coding region of the human TP53 tumor-suppressor 
gene, occur at methylated cytosines where methylated 
CpG dinucleotides increase UV-induced mutations, 
due that the methyl-group shifts the UV absorption 
spectrum for cytosine-base by the light-spectrum in 
sunlight exposure, affecting chemical and epigenetically 
gene-drivers in smokers with lung cancer.61,65 
	 While, at epigenome-wide level have been identified 
several epigenetic aberrations in genome-loci, and/or focal 
DNA gene-promoters sequences as potential epigenetic 
biomarkers, highlighting homeobox-related (HOX) locus, 
known as HOX-clusters A, B, C and D encoding genes 
located at Chr:2, Chr:7, Chr:12 and Chr:17, epigenetically 
regulated by DNA methylation in both NSCLC cells and 
NSCLC tumors derived from stage I patients, highlight-
ing promoter-sequences hypermethylation on HOXA7 
and HOXA9 genes.59 As well as, DNA hypermethylation 
in additional HOX encoding-gene promoters as: OTX1, 
OSR1, IRX2 and NR2E1 for stage I-III NSCLC patients,29 
reinforcing that DNA-methylation may be used as 
persistent epigenetic biomarkers for basic research and 
clinical-stage progression of NSCLC patients.60,66 Finally, 
resulting in a) the activation of genetic repetitive ele-
ments, b) genomic DNA-instability and c) constitutive 
genetic expression of specific oncogenes patterns, rep-
resenting pivotal key elements involved in carcinogenic 
and/or tumorigenesis processes, as part of the emerging 
hallmarks of cancer, as genome-instability phenomena, and 
probably epigenome instability-variability as emerging 
hallmarks of NSCLC.67

Histone code modifications in NSCLC

Epigenetic (post-translational) modifications of the his-
tone code conforming to nucleosomes are continually 
contributing with reversible stability into the biological 
processes of transcription, nuclear architecture, and 
genomic stability, which occur through the N-terminal 
domain modifications by acetylation, methylation, 
phosphorylation, ubiquitination, sumoylation, ADP-
ribosylation and deamination.68

	 On that epigenetic marks, by acetylation in ly-
sine residues (Eg., H4K16ac) and trimethylation of 
the lysine 20 residue (H4K20me3), have importantly 
been identified as early lung epigenetic biomarkers. 
Importantly, loss of the differentiation-specific histone 
marker H3K9me3, continuously occurs in lower density 
CpGs regions in several types of malignant diseases, 
next to the gene promoter sequences known as “CpG 
island-shores”. Moreover, it has well been described 
that variation in the DNA methylation rates outside of 
the CpG islands, contributes directly to the NSCLC het-
erogenicity. Furthermore, it has been well characterized 
loss of the active histone marks H3K9ac and H3K4me3, 
with an increased enrichment of the repressive histone 
marks H3K27me3 and H3K9me2/me3 (figure 1), of 
which biological and clinically correlate with lung 
malignant progression, and poor therapy responses in 
NSCLC.16,69,70

	 Reports have described that low levels of H3K9me2 
are associated with poor prognosis in lung cancer, 
and other epithelial types of cancer. While low levels 
of H3K18ac and H3K4me2 predict poor prognosis in 
NSCLC patients.21 In particular, Van Den Broeck and 
colleagues in 2008, have identified that trimethylation 
state in lysine 20 of histone H4 (H4K20me3) allows the 
prognosis stratification of AD-NSCLC patients with 

(continuation)

PRC1/
Subunit
BMI-1

BMI1 is overexpressed in lung AD samples, and correlated with clinical features 
of lung cancer, including metastasis rates. Knockdown of BMI1 reduced cellular 
migration and invasion/metastasis of A549 and SPCA1 lung AD cell lines, further 
upregulated metastasis gene (PTEN) and downregulated pAKT and VEGF ex-
pression in lung AD cells. 

Lung Cancer Samples of Chinese Patients diagno-
sed in 2009 and 2010 at the Dalian fifth Hospital, 
Dalian, China.
n= 38: 18 men and 20 women, ranging 41-79 
years old.
Lung cancer cell lines: A549 and SPC-A1

(48)

SWI/SNF: Switch/Sucrose Non Fermentable; SMARCB1: SWI/SNF Related, Matrix Associated Actin Dependent Regulator Of Chromatin, Subfamily B, Member 
1; SMARCA2: SWI/SNF Related, Matrix Associated Actin Dependent Regulator Of Chromatin, Subfamily A, Member 2; SMARCA4: SWI/SNF Related, Matrix 
Associated Actin Dependent Regulator Of Chromatin, Subfamily A, Member 4; BZ1B (WSTF): Bromodomain Adjacent To Zinc Finger Domain 1B; RBBP7: RB 
Binding Protein 7, Chromatin Remodeling Factor; MTA2: Expression of metastasis-associated protein 2; HDAC1: Histone deacetylase 1; HDAC2: Histone dea-
cetylase 2; CHD: Chromodomain Helicase DNA Binding Protein; EZH2: Enhancer Zeste Homolog 2; PRC1 and PRC2: Polycomb Repressive Complex 1 and 
2; BMI1: BMI1 Proto-Oncogene, Polycomb Ring Finger; AD: lung adenocarcinoma; WSE: Wood smoke exposure; NSCLC: Non-Small Cell Lung Cancer; SCC: 
Squamous Cell Carcinoma; M-BRM: membranous BRM staining; ATCC: American Type Culture Collection; CNIO: Spanish National Cancer Centre.
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higher risk of death in clinical stage I. H4K20me3 has 
additionally been proposed as biomarker in subgroups 
of AD patients with poor differential clinical prognosis, 
and potentially determinant for the use of adjuvant 
chemotherapy.71

	 Additionally, while low levels of the histone mark 
H3K27me3 have been associated with chemo resis-
tance and poor prognosis in NSCLC patients,56 addi-
tional reports have confirmed that higher expression of 
H3K27me3 correlates with better overall survival (OS) 
and better prognosis, redefining subgroups of NSCLC 
patients with an epigenetic phenotype and different 
clinical outcome.72

	 Additionally, despite histone marks H3K4me2, 
H2AK5ac and H3K9ac are related to global and disease-
free survival in early clinical stages of NSCLC patients, 
undergoing curative surgical resection.73 However, due 
that histone modifications are associated with tumor 
suppressor gene repression mechanisms or oncogene 
activation, the behavior of such reversible histone code 
modifications must be studied in a depth manner, which 
will be necessary for a deep understanding to define 
their predictive role and/or functional in the experimen-
tal or clinical management in the NSCLC progression, 
and new pharmaco-epigenetics therapy field on NSCLC.

Table II
Histone profile aberrations in NSCLC

Histones Gene involved and alteration Study samples Reference(s)

H3K4me3/H3K27AC Sonic Hedgehog GLI-1 Overexpression, Chemoresistance and Poor 
Overall Survival.

A total of 123 tumor samples from 
2 cohorts of NSCLC, (33) INER and 
(90) INCAN. NSCLC cell lines A427, 
A549, NH2347, HCC827 and H1975. 

(52)

H3K4me3/
H3K9me3

Epigenetic (Histones) reprogramming at GLI-1 gene promoter sequences, 
by cancer drugs (cisplatinum) exposure.

NSCLC cell l ines A427, A549, 
NH2347, HCC827 and H1975

(53)

H3K4me3 miR-375
Overexpression. 

Activated by ASH1 and Inhibits YAP1 in a Lineage Dependent Manner in 
Lung Cancer.

A549 lung adenocarcinoma cell line 
without NE differentiation and a 
typical SCLC cell line, ACC-LC-172.

(54)

H3K4me3 NFE2L3, Overexpressed.
ETV4, Overexpressed.
PRTG, Overexpressed.
TMEM86A, Overexpressed.

Epigenetic Biomarkers of Lung Adenocarcinoma through Multi-Omics Data.

26 lung adenocarcinoma cell lines (55)

H3K27me3/
H3K27AC

TWIST1/MEOX2,
Overexpression.

MEOX2 and TWIST1 Genes Are Associated with H3K27me3 Levels, 
Chemoresistance and Poor Prognosis in Lung Cancer.

55 lung tumors (LT), 15 adjacent 
non-involved lung cancer matched 
tissues (LNAT) and 20 lung precur-
sor lesions (LP) from Fresh Frozen 
(FF) and Formalin-Fixed and Paraffin 
Embedded (FFPE).

(56)

H3K9me3 Large Intergenic Non-Coding RNA (LincRNA) H19, Downregulation.

Mineral dust-induced genes (mdig), induce significant reduction of the 
H3K9me3 on H19 gene promoter.

Increased mdig and H19 correlate with aberrant heterochromatin and 
poorer survival in lung cancer patients.

A549 Lung adenocarcinoma cell line (57)

H3K9me3 Jumonji C (JmjC) Domain Proteins Family. Jmjd2C (GASC1, gene), Ove-
rexpressed.

Lung cancer-associated JmjC domain protein mdig suppresses formation 
of tri-methyl lysine 9 of histone H3.

13 Lung AD, and 23 SCC. (58)

H3K9me3: tri-methyl lysine 9 of histone H3; H3K27AC: acethyl lysine 27 of histone H3; H3K4me3: tri-methyl lysine 4 of histone H3; H3K27me3: tri-methyl 
lysine 9 of histone H3; GLI1: Glioma-Associated Oncogene Homolog 1; ASH1: Like Histone Lysine Methyltransferase; YAP1: Yes Associated Protein 1; NFE2L3: 
Nuclear Factor, Erythroid 2 Like 3; ETV4: Ets Variant Gene 4; E1A: Enhancer-Binding Protein E1AF; PRTG: Immunoglobulin Superfamily, DCC Subclass, Member 5; 
TMEM86A: Transmembrane Protein 86A; MEOX2: Mesenchyme Homeobox 2; Twist1: Twist Family BHLH Transcription Factor 1; GASC1: Lysine Demethylase 4C.
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Conclusions
Future directions: Integrative studies 
by chromatin remodeling complexes in 
NSCLC

Over-represented emerging epigenetic biomarkers as bio-
molecular signals of the malignant cellular transforma-
tion processes represent powerful molecular tools in the 
transitory of molecular and histological steps, in accord 
with early diagnosis and/or late predictive tumor aggres-
siveness to predict therapy responses. To date remain-
ing functionally unknown several epigenetic complex 
mechanisms to support novel applied epigenetic-drugs 
(pharmaco-epigenetics therapy) knowledge in NSCLC. 
	 Spite that CpGs islands, represent approximately 
1% of the total of human genome, located near of, or 
in gene-promoter sequences, global spread epigenetic 
marks in NSCLC epigenome has not just commonly 
been associated with the genome instability, and/or 
aberrant genetic expression patterns in early and late 
events in human NSCLC tumorigenesis. Instead or in 
addition chromatin remodeling complexes (Trithorax, 
NuRD, and Polycomb complexes) are epigenetically 
controlling genetic sequences in an active-dependent, 
but in an independent well-known DNA methylation 
status at several driver-gene promoter sequences, 
in others p16, H-cadherin, RASSF1A, APC, DAPK1, 
EGFR, BRAF, AKT/ALK, MEOX2/GLI1, SMARCB1, 
etc. (figure 1). Due that aberrant DNA methylation, 
histone code modifications and chromatin remodeling 
complexes gene expression and function rates, must be, 
begun as useful and standard tools in NSCLC diagno-
sis, lung malignant histological-phenotype subtype, 
clinical stage, malignant aggressiveness and therapy 
prognosis response, as well as, probably epigenetic-
biomarkers associated with the risk for lung cancer 
development.16 
	 However, to date relevant knowledge about higher 
molecular complexity of the epigenetic mechanisms, 
must be considered, but based on the several new mo-
lecular alterations of the well-assembled mechanisms 
of the Chromatin Remodeling Complexes, such as: Tri-
thorax (SMARCB1, SMARCA2, SMARCA4, etc.), NuRD 
(RBBP7, MTA2, HDAC1, etc.), and Polycomb (EZH2, 
BMI-1, etc.) complexes (figure 1). Some of which have 
been clinically and oncologically validated on in vitro 
experimental NSCLC cellular and in vivo models, and  
implicated in NSCLC patients, described and summa-
rized in table I. Which, in the advanced therapeutically 
strategies must be functional analyzed in synchronicity 
with the nucleosome structures and histone-code pat-
terns on the functional epigenome-occupancy, whose 

biological and clinical implications in human NSCLC, 
have previously been reported, and summarized in 
table II. All of that, must be deeply studied, for a better 
and integral epigenetic-knowledge (DNA methylation, 
histone modifications and remodeling complexes pat-
terns) into the control mechanisms of transcriptional 
regulations status, helpful to explain genetic-epigenetic 
cancer biomarkers expression (figure 1), all necessary 
for future concerns in lung cancer biology, personalized 
medicine, and emerging hallmarks of cancer applied 
into the translational medicine, accompanied by imag-
ing technologies for diagnosis, and prognosis in NSCLC 
oncological therapies.
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