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Objective To improve the methodological basis for modelling the HIV/AIDS epidemics in adults in sub-Saharan
Africa, with examples from Botswana, Central African Republic, Ethiopia, and Zimbabwe. Understanding the
magnitude and trajectory of the HIV/AIDS epidemic is essential for planning and evaluating control strategies.
Methods Previous mathematical models were developed to estimate epidemic trends based on sentinel
surveillance data from pregnant women. In this project, we have extended these models in order to take full
advantage of the available data. We developed a maximum likelihood approach for the estimation of model
parameters and used numerical simulation methods to compute uncertainty intervals around the estimates.
Findings In the four countries analysed, there were an estimated half a million new adult HIV infections in 1999
(range: 260 to 960 thousand), 4.7 million prevalent infections (range: 3.0 to 6.6 million), and 370 thousand adult
deaths from AIDS (range: 266 to 492 thousand).
Conclusion While this project addresses some of the limitations of previous modelling efforts, an important
research agenda remains, including the need to clarify the relationship between sentinel data from pregnant
women and the epidemiology of HIV and AIDS in the general population.
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statistique; Surveillance par système sentinelle; Afrique subsaharienne (source: INSERM ).

Palabras clave Sı́ndrome de inmunodeficiencia adquirida/epidemiologı́a; Infecciones por VIH/epidemiologı́a;
Seroprevalencia de VIH/tendencias; Modelos estadı́sticos; Vigilancia de guardia; Africa subsahariana (fuente: BIREME ).

Bulletin of the World Health Organization, 2001, 79: 596–607.
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Introduction

In the two decades since the first cases of AIDS were
identified, HIV/AIDS has emerged as one of the
leading challenges for global public health. Particu-
larly in sub-Saharan Africa, where the majority of
HIV and AIDS cases are concentrated, the epidemic
continues to take an extraordinary human toll. To
plan and evaluate control strategies effectively and to
prepare for vaccine efficacy trials, it is critical to
estimate the magnitude and trajectory of the HIV/
AIDS epidemic. Trade-offs between alternative
interventions and policies must be based on the best
possible information about current levels and trends
in the epidemic.

Unfortunately, population-based epidemiolo-
gical data for sub-Saharan Africa are extremely

limited. Incidence data are rare because direct
measurement is difficult, and because cohort studies
are expensive and require long follow-up periods;
AIDS notification data capture only a fraction of new
AIDS cases and are subject to reporting delays.
Information on AIDS-attributable mortality is also
essential to assess the impact of the epidemic, but
vital registration systems have extremely limited
coverage in most of sub-Saharan Africa. Other
population-based mortality data, while increasingly
available for children through the Demographic and
Health Surveys (1), are uncommon for adults.

Seroprevalence data
The most widely available epidemiological data on
HIV/AIDS in Africa are seroprevalence data.
Although population-based prevalence surveys
would be themost useful, they have been undertaken
in only a small number of locations (2–12). By
contrast, sentinel surveillance systems, which moni-
tor the prevalence of HIV infection in specific
subpopulations, have been established in countries
throughout the region, and data are available for a
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range of different population groups, including
commercial sex workers, injecting drug users, blood
donors, and pregnant women attending antenatal
clinics. It is believed that the antenatal clinic data
most closely approximate prevalence levels in the
adult population, although the relationship between
prevalence among clinic attendees and that of the
general population remains uncertain (13).

The need for models
Given the need to understand better the levels and
trends of the HIV epidemic, and the limited informa-
tion on which to base these estimates, mathematical
models can make a valuable contribution. The goal of
any modelling exercise is to extract as much informa-
tion as possible from available data and provide an
accurate representation of both the knowledge and
uncertainty about the epidemic. A number of different
models of HIV and AIDS have been developed,
ranging from simple extrapolations of past curves (14)
to complex transmission models (15–18).

A major tradition in modelling HIV/AIDS
epidemics has been to use backcalculation, or back-
projection, techniques. These techniques produce
statistical solutions to convolution equations that
relate the number of AIDS diagnoses over time to past
trends in HIV infection, and to the distribution of the
HIV incubation period. The models were introduced
more than a decade ago (19, 20) and have been applied
in many settings (21–28), almost exclusively in
industrialized countries where AIDS notification is
imperfect, but considerably more complete than in
most developing countries. Several studies have tried
to account for the effects of different sources of
uncertainty on the trajectory of the epidemic, includ-
ing the length of reporting delays, the distribution of
HIV incubation times (29), and the effects of
treatment and other issues (24, 30).

Epimodel
Traditional backcalculation methods cannot be used
to model HIV epidemics in developing countries due
to the paucity of reliable information on the incidence
of AIDS. A modified framework was therefore
developed by WHO to reconstruct HIV incidence
curves and develop short-term projections, based on
the prevalence ofHIV infection, rather than onAIDS
notifications. The model developed by WHO was
formalized in a software programme called Epimodel
(31). Epimodel uses an input estimate of point
prevalence in a reference year, combined with
assumptions about HIV/AIDS progression rates
and the start year of the epidemic, to reconstruct
incidence curves from the beginning of the epidemic.
Because there could be an infinite number of
incidence curves consistent with a particular start
year and point prevalence estimate, Epimodel
imposes further structure on the estimation by
assuming that the HIV infection rate follows a
parametric curve over time based on the gamma
distribution. Both the shape of the curve and the

position on the curve in the anchor year are required
inputs. Epimodelmay thus be considered a determin-
istic variant of the original backcalculation models.

Epimodel was used to produce a series of
estimates by the formerWHOGlobal Programme on
AIDS, and by the collaborative efforts of WHO and
the Joint United Nations Programme on HIV/AIDS
(UNAIDS). Several sets of regional estimates have
been developed since 1989, based on the estimated
number of HIV-infected individuals in each region
(32–34). The first country-level estimates of the
epidemic were also produced with Epimodel (35),
using country estimates of infection prevalence for
1994 (36) and revisions of these estimates for 1997.
Epimodel was also used in the most recent round of
WHO/UNAIDS country estimates for sub-Saharan
Africa, using prevalence data from antenatal clinics as
the starting point (37).

Given the accumulation of surveillance data over
the last 10 years, it is worth revisiting some of the
strong restrictions in Epimodel that were necessitated
by the dearth of data at the time of its development. In
particular, it is important to reconsider the reliance on
expert judgment, rather than on analytical strategies
that use the full set of available data. In this paper, we
adapted the statistical tools developed in the original
backcalculation work to the problem of modelling
epidemics in developing countries. This is especially
important given the need to characterize the un-
certainty around the HIV epidemics in sub-Saharan
Africa. For this study, some of the basic assumptions
used in Epimodel were preserved, but the determinis-
tic structure imposed on the curve-fitting procedure
has been relaxed. Using a maximum likelihood
approach, it was possible to use all of the available
data for the curve-fitting exercise, as well as to
represent some of the uncertainty in the estimates.
The two main goals were to improve the methodolo-
gical basis for modelling the HIV/AIDS epidemics in
sub-Saharan Africa, and to develop estimates of
incidence, prevalence, and mortality over time that
included ranges of uncertainty. Although we focused
on adult populations in sub-Saharan Africa, the
epidemiology of HIV/AIDS in children is also
important, but was outside the scope of this study.

Methods

Data Sources
The objective of the modelling exercise was to
estimate trends in HIV/AIDS incidence and mor-
tality, using sentinel surveillance data on HIV
seroprevalence among pregnant women attending
antenatal clinics. The sentinel surveillance pro-
gramme is based on anonymous, unlinked testing in
a selection of clinics within a country, with each clinic
reporting the annual proportion of attendees that
tested positive for HIV infection. The United States
Bureau of the Census has compiled these data since
1987 (38) and they are presented by UNAIDS and
WHO in the form ofEpidemiological fact sheets for each
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country (39). Sentinel data from antenatal clinics are
available for nearly every African country for at least
one year, but there is considerable variation in the
number of clinics that report each year.

The Epidemiological fact sheets divide sites into
two categories: ‘‘major urban areas’’ and ‘‘outside
major urban areas.’’ For a number of countries, there
were insufficient data from both urban and non-

urban areas to estimate all model parameters. We
therefore selected four countries with sufficient data
for both types of areas to reflect a range of
surveillance coverage levels: Botswana, Central
African Republic, Ethiopia, and Zimbabwe. Table 1
summarizes the seroprevalence data from these four
countries. For this analysis it was assumed that
seroprevalence in the general population may be

Table 1. Summary of HIV seroprevalence in antenatal clinics in Botswana, Central African Republic, Ethiopia, and Zimbabwe

Country data Year

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998

Botswana
Major urban sitesa – – – – 1 1 2 2 3 2 3 2 3
Seroprevalenceb (%)

minimum – – – – – – 14.9 19.2 27.0 28.7 31.4 34.0 39.1
median – – – – 6.0 8.0 19.3 26.8 27.8 34.2 37.8 38.5 43.0
maximum – – – – – – 23.7 34.3 29.7 39.6 43.1 42.9 49.9

Non-urban sitesa 1 – – – 1 – 2 5 3 5 4 5 6
Seroprevalenceb (%)

minimum – – – – – – 7.5 9.5 16.0 18.9 21.8 28.2 22.3
median 0 – – – 4.1 – 10.1 17.8 19.4 29.9 31.6 33.7 30.0
maximum – – – – – – 12.7 19.9 23.1 38.9 43.8 38.3 37.5

Central African Republic
Major urban sitesa 1 1 1 1 3 – – – 2 2 3 – –
Seroprevalenceb (%)

minimum – – – – 6.0 – – – 5.3 6.4 8.8 – –
median 4.7 5.2 6.9 8.0 6.8 – – – 9.3 10.4 11.6 – –
maximum – – – – 7.9 – – – 13.3 14.4 14.8 – –

Non-urban sitesa 1 – – 1 6 3 3 7 9 10 10 – –
Seroprevalenceb (%)

minimum – – – – 1.6 3.0 3.7 6.5 2.7 6.9 1.6 – –
median 6.3 – – 0 6.5 8.0 5.0 7.7 10.0 12.2 13.7 – –
maximum – – – – 7.7 9.1 7.6 13.5 16.7 20.0 20.0 – –

Ethiopia
Major urban sitesa – – – 2 – 1 1 1 1 2 4 4 –
Seroprevalenceb (%)

minimum – – – 2.1 – – – – – 19.5 9.3 14.1 –
median – – – 5.1 – 10.7 11.2 20.2 20.4 19.9 18.7 17.6 –
maximum – – – 8.0 – – – – – 20.3 26.5 20.0 –

Non-urban sitesa – – – – – 2 – 10 – — – 1 5
Seroprevalenceb (%)

minimum – – – – – 2.8 – 0 – – – – 0.8
median – – – – – 4.9 – 4.3 – – – 12.7 9.2
maximum – – – – – 6.9 – 13.0 – – – – 14.5

Zimbabwe
Major urban sitesa – – – 1 4 1 1 1 1 2 – 1 –
Seroprevalenceb (%)

minimum – – – – – – – – – 30.0 – – –
median – – – 10.0 18.7 17.1 29.3 25.8 30.3 31.0 – 28.0 –
maximum – – – – – – – – – 32.0 – – –

Non-urban sitesa – – – – 3 14 15 14 13 11 3 20 –
Seroprevalenceb (%)

minimum – – – – 7.6 7.7 6.6 13.7 14.4 23.0 36.5 7.0 –
median – – – – 12.3 21.2 20.0 20.0 24.5 39.5 46.7 30.0 –
maximum – – – – 31.6 33.8 42.1 27.0 36.2 70.2 59.0 50.8 –

Source: ref. 39.
a The number of sites reporting in each year.
b In years with only one site reporting, the single value appears as the median.
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inferred from data in the sentinel populations, but
this assumption is examined further below.

Backcalculation equation
As in Epimodel, the model presented here adapted
the original backcalculation framework by focusing
on HIV seroprevalence data, rather than AIDS
notifications. The foundation of the model was the
relationship between prevalence, incidence, and
survivorship over time for infected individuals.
Defining t = 0 as the first year of the epidemic, the
number of HIV-infected individuals at time t is equal
to the total number of individuals who were infected
before time t and are still alive at time t:

P(t) = S
t–1

s=0
I(s) F(t–s–0.5) (Eq. 1)

where P(t) is the prevalence of infected people at time
t expressed as an absolute number, I(s) is the number
of new infections occurring between time s and (s+1),
and F(t) is the probability that an individual will
survive at least t years after being infected. Half a year
is subtracted from the duration in the survivorship
function, under the assumption that the average
moment of infection within a given time period is the
midpoint of that period. For example, prevalence at
year 10 in the epidemic would include those
individuals infected during the ninth year who have
endured an average of 0.5 year’s mortality risk, plus
those individuals infected during the eighth year who
have endured an average of 1.5 years ofmortality risk,
and so on.

Eq. 1was defined in terms of absolute numbers
of incident and prevalent infections. A slight
modification was necessary to express the relation-
ship in proportions rather than absolute numbers. In
the simplest case, where the population size does not
change over time, Eq. 1 translated directly to
proportions, as both sides of the equation may be
divided by the population number at time t, Pop(t):

P(t)
Pop(t) = S

t–1

s=0

I(s)
Pop(t) F(t–s–0.5) (Eq. 2)

In a stable population, Pop(t) = Pop(s) for all s, which
leads to:

P(t)
Pop(t) = S

t–1

s=0

I(s)
Pop(s) F(t–s–0.5) (Eq. 3)

or, equivalently:

PR(t) = S
t–1

s=0
IR(s) F(t–s–0.5) (Eq. 4)

where PR(t) is the proportion of the population who
have prevalent infections at time t, and IR(s) is the
incidence of new infections between time s and (s+1),
expressed as a proportion of the population at time s.

If the population size changes over time, an
additional factor is required to capture this change:

PR(t) = S
t–1

s=0
IR(s)

Pop(s)
Pop(t)

F(t–s–0.5) (Eq. 5)

The statistical model
Based on the relationship described in Eq. 5, the
backcalculation approach uses prevalence data at
different time points, combined with survivorship
assumptions, to reconstruct past trends in incidence,

expressed as the vector IR(s) for s = (0, 1, 2, ..., t).
Given that the earliest observed prevalence in the
data set is from 1986, identification of all elements of
IR(s) would be impossible without imposing some
structure on the shape of the infection curve.
Specification of an incidence curve defined by a
minimal number of parameters serves both to reduce
the dimension of the problem and to allow estimation
of trends prior to the first observed data point. Even
if the prevalence data extended as far back as the
beginning of the epidemic, additional structure on the
shape of the infection curve would be useful in
constraining improbable oscillations in estimates of
incidence over time. Proponents of the backcalcula-
tion approach have selected various parametric forms
for the incidence curve, based on empirical observa-
tion of epidemics and insights from dynamic
mathematical models. Details of the functional forms
for incidence and the survivorship assumptions used
in this paper are described below. For any specifica-
tion, a set of values on all of the parameters will define
a unique set of incidence and prevalence curves over
time according to Eq. 5. The analytical objective is to
estimate the set of parameter values that are most
likely to have produced the observed prevalence data.

To estimate the parameters, the observed data
on prevalence were related to an underlying stochastic
model. One simplemodel might assume that the set of
prevalence observations from different sites in a
particular year was drawn from a normal distribution
with an expected value defined by Eq. 5, conditional
on a specified incidence and survivorship. In this
model, the task would be to estimate the set of
parameter values that define an average national
infection curve and survivorship function, as well as
an additional parameter indicating the variance in
prevalence across different sites in a given year. More
complicated models may be warranted if additional
information on individual sites could be used to define
site-specific prevalence distributions, with expected
values related to these additional variables. If the
sample sizes in each site were known, it would also be
possible to account for sampling variation within each
site, in addition to the variability across sites.

In the data set used here, the only additional
information that distinguished sites was their location
either inside or outside major urban areas. Evidence
from epidemiological studies suggests that epidemics
tend to originate in highly populated areas, such as
major cities and trading centres, and then radiate
outward to less populated areas (10). We have
therefore allowed for distinct but related epidemics
in urban populations and non-urban populations
within each country. It was assumed that observations
from urban sites were drawn from one distribution,
while observations in non-urban sites were drawn from
a separate distribution, although themean values of the
two distributions were related through the parametric
models for incidence, as described below.

Parameter specification
Parametric forms for IR(

.) and F(.) were developed
using Epimodel assumptions as points of reference.
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The general model is presented first, followed by a
description of the differences between the urban and
non-urban models. The shape of the incidence curve
over time was based on the shape of a gamma density
function, chosen for its convenience and flexible form,
rather than for its implications in terms of probability:

g(s) =
b–a sa–1e

–s—
b

G(a)
(Eq. 6)

The use of a density function as the basis for IR(s)
required two modifications before the function could
serve as a plausible model of trends in incidence.
Firstly, g(s) was multiplied by an additional scalar, g, to
allow the entire curve to be adjusted to an appropriate
level for incidence rates. Secondly, because the density
function declined rapidly to zero after its mode, it was
likely to give a poor representation of an epidemic after
it peaks. Insights from dynamic transmission models
(16), and evidence from the advanced epidemic in
Uganda (5, 40), both suggested that incidence would
be more likely to approach a stable equilibrium level
above zero. A parameter, y, determining the equili-
brium incidence level in relation to the peak incidence
level, was thus incorporated in the model. After the
mode, which occurred atb(a–1), incidence during year
s was computed as a weighted average of gg(s) and the
modal value.a The weight on the modal value was y,
constrained in this study to be between 0.25 and 0.75,
based on the limited evidence available. Including
these two modifications, the level and trajectory of an
incidence curve was determined by the values of four
parameters (see Eq. 7 below). This functional form
offered considerable flexibility in defining a wide range
of different possible curves.

The incidence curve for urban populationsmay
differ from that for non-urban populations in three
ways: firstly, gmay be different— i.e. the overall level
of the epidemic may be higher or lower; secondly, y
may be different — i.e. the epidemic may settle to a
different equilibrium level; and thirdly the epidemic
may unfold over a faster or slower time course. This
was modelled by multiplying every occurrence of s in
Eq. 7 by a scalar parameter q. The scalar is also applied
to both occurrences of b(a–1) in the second line of
Eq. 7. If q>1, then the non-urban epidemic rises and
falls at a more accelerated pace than the urban
epidemic; conversely, q<1 implies a slower epidemic
outside of urban areas. Thus, the urban and non-
urban incidence curves in each country shared certain
common parameters, but differed in others, and a
total of seven parameters defined the urban and non-

urban curves within a country. Urban incidence was a
function of a, b, gU, and yU, while non-urban
incidence was a function of a, b, gN, yN, and q.

The time from infection to death was assumed
to follow a Weibull distribution. Consequently, the
probability that an individual will survive at least
t years after infection, F(t), is summarized by the
following two-parameter function:

F(t) = exp(-ktc) (Eq. 8)

The Weibull distribution has been used frequently to
describe the distribution of AIDS incubation times
(19, 20, 25, 26). In industrialized countries, the advent
of highly active antiretroviral therapy (HAART) has
undoubtedly altered the survivorship function, but
the uptake of HAART in Africa has been minimal to
date. Nevertheless, uncertainty around the survivor-
ship function remains an important issue to be
addressed in future work. For this exercise, data
limitations demanded a parsimonious model, so the
Weibull parameters were fixed at k = 0.021 and c =
1.6. These parameters were chosen to match the
baseline assumptions in Epimodel, with a median
time from HIV infection to death of approximately
9 years.

To further simplify Eq. 5, it was assumed that
population growth occurred at a constant rate in each
country during the years spanned by the epidemic.
Although the demographic impact of the HIV
epidemic has probably altered the accuracy of this
assumption, the implications of this error on themodel
results are negligible. Assuming that the population is
growing at a constant rate, r, then Pop(s) = Pop(t)e-r(t-s)

for s = (0, 1,..., t). Thus, the sequence of ratios
Pop(s)/Pop(t) for s = (0, 1, ..., t) may be summarized
simply as e-r(t-s) in Eq. 5, which reduces the information
requirement from the full sequence of populations
over time to a single constant. An average growth rate
of 3% was used in this exercise and the results were
insensitive to changes in this assumption.

Estimation of parameters
For each country, the parameters for urban and non-
urban epidemics were estimated simultaneously,
allowing for correlations between the various para-
meters. The final model included eight unknown
parameters: the seven incidence parameters and one
additional parameter that indicated variance across
sites in each year within the urban or non-urban
categories.

g b–a sa–1e
–s—
b

G(a)
for s4b(a–1)

IR(s) ={ (Eq. 7)

g[(1–y) b–a sa–1e
–s—
b

G(a) + y b–a (b(a–1))a–1e
–b(a–1)————

b

G(a) ] for s4b(a–1)

a Use of a weighted average of the peak level and the unmodified gamma
level was adapted from proposals by Dr Griffith Feeney and Dr Tim Brown
following discussions at the meeting of the Reference Group on HIV/
AIDS Estimates, Modelling and Projections (Geneva, Switzerland,
10–11 June 1999).
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Maximum likelihood estimation (MLE) was
used to identify the vector of parameter values that
most likely produced the full set of observed
prevalence data in urban and non-urban sites for
each country. The MLE parameter values were
translated into maximum likelihood estimates of
incidence and prevalence over time. National
estimates were calculated as the average of the urban
and non-urban estimates, weighted by the respective
populations. Using a similar relationship as that
described in Eq. 5, it was also possible to compute
trends in population mortality over time, based on a
specified incidence curve and survivorship function:

MR(t) = S
t–1

s=0
IR(s)e

–r(t–s) [F(t–s–0.5)–F(t–s+0.5)] (Eq. 9)

whereMR(t) is the proportion of the population at time
t that will die with HIV infection between time t and
time (t+1); IR(s) and F(t) are defined as before. For
example, deaths occurring in HIV-positive individuals
during the tenth year of the epidemic will include those
people who were infected during year 0 and have
survived for more than 9.5 but less than 10.5 years
after being infected, plus those who were infected
during year 1 and survived for more than 8.5 but less
than 9.5 years after being infected, and so on.

Eq. 5 andEq. 9 thus allowed a set of parameters
describing incidence and survivorship to be trans-
lated into curves that represented population pre-
valence and mortality over time.

Uncertainty analysis
The use of a likelihood approach allowed estimation
not only of theMLE values for incidence, prevalence,
and mortality, but also a measurement of uncertainty
around these estimates. Given the structure of the
model, there were many different epidemic curves
that could have provided an acceptable fit to the
available data. The range of different past trends that
might plausibly have produced the observed data
points were estimated through the likelihood
approach and were represented by upper and lower
bounds on the quantities of interest.

Numerical simulation methods were used to
identify a range of plausible values for the unknown
parameters. In each country, 20 000 sets of candidate
parameter vectors were generated by sampling from a
triangular distribution around each parameter. Each
distribution was defined based on the parameter
estimate and standard error produced by the MLE
procedure, with a peak at the MLE value and a range
spanning two standard errors above and below the
MLE value, subject to the logical constraints on each
parameter — e.g. by definition, g must be greater
than zero. For each candidate vector of parameter
values, a likelihood ratio statistic was calculated as
twice the difference between the maximum log
likelihood and the log likelihood under the candidate
values. Based on a w2 approximationwith 8 degrees of
freedom, the likelihood interval, chosen to corres-
pond to an approximate 95% confidence interval,
was defined to include the subset of parameter

vectors for which the likelihood ratio statistic was less
than 15.51.

For the MLE parameter values and each of the
parameter vectors in the likelihood interval, national
estimates for HIV incidence, HIV prevalence, and
AIDS mortality were calculated as the average of the
urban and non-urban values, weighted by the size of
the respective populations. For any given year, ranges
around incidence, prevalence, and mortality were
defined by the highest and lowest values for these
measures computed from the subset of parameter
vectors in the likelihood interval.

The bounds produced in this analysis reflect
uncertainty around the parameter estimates, but do
not capture other sources of uncertainty relating to
the specification of the model (model uncertainty)
and the data to which the model is fit (sampling error
and measurement error).

Results

Fig. 1 presents a comparison between the model
results for prevalence in each of the four countries
and the observed data on prevalence in pregnant
women from the sentinel surveillance sites. In
Botswana and Ethiopia, HIV seroprevalence was
systematically higher in urban areas, when compared
to levels outside urban areas. However, data from the
Central African Republic indicate that seroprevalence
levels in non-urban areas may rise later but thenmore
rapidly than levels in urban areas. (In the model
results for the Central African Republic, one
relatively high prevalence observation in a non-urban
site in 1986 appears to have dampened this effect.) In
Zimbabwe, recent trends were unclear, as was the
relationship between urban and non-urban epi-
demics, since there were few urban sites and only
one observation since 1995. In none of the countries
was there conclusive evidence that prevalence levels
have peaked, although evidence from Botswana and
Ethiopia were suggestive of recent peaks. In the
Central African Republic prevalence rates rose
steadily through 1996, when the last observations
were made.

Using the maximum likelihood parameter
estimates and the range of parameter values in the
likelihood interval, estimates of incidence, preva-
lence, and mortality over time were developed,
together with upper and lower bounds on these
estimates (Figs 2–4). Fig. 2 suggests that incidence
rates are currently declining in Botswana, Ethiopia,
and Zimbabwe, but may still be rising in the Central
African Republic. The bounds indicate the uncer-
tainty around the range of past trends that are
consistent with observed prevalence data in each
country. In relative terms, the greatest degree of
uncertainty occurs in Ethiopia, where there is
considerable ambiguity about the year in which
incidence may have peaked, as well as more than a
fourfold difference between the upper and lower
estimates of incidence in the year 2000. The
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difference between upper and lower estimates for
2000 is approximately threefold in Zimbabwe and
smaller in Botswana and the Central African
Republic. Generally, the level of uncertainty is
greatest for the most recent estimates, as prevalence
data provide more information about levels and
trends in incidence several years before the date of
reporting than those that are nearer in time.

Fig. 3 presents the results for prevalence
estimates. Again, the greatest degree of uncertainty
appears in Ethiopia, following directly from the
uncertainty in the incidence estimates. Overall, the
levels of uncertainty around prevalence are smaller
than those around incidence, as the models are fit to
the prevalence data and thereby constrained tomatch
observed trends as closely as possible. Where there
are more data points that trace a relatively smooth
trajectory over time, as in Botswana, the bounds
around prevalence are relatively tight.

Mortality estimates for the four countries are
shown in Fig. 4. Because of the long incubation
period, trends in mortality rates tend to lag
approximately 10 years behind trends in incidence.
Thus, if incidence in Botswana peaked around 1994,
then mortality is expected to continue to increase for
several years into the next decade. A given level of
uncertainty around incidence translates into a smaller

level of uncertainty around mortality in each year,
conditional on fixed values for the progression
distribution. This is because the incident cases from
a particular year will follow some distribution in terms
of the time from infection to death, so that changes in
incidence over a short period tend to be smoothed
out over longer periods in terms of mortality.

The estimates and ranges for incidence, pre-
valence, and mortality in each country in 1999 are
summarized in Table 2. The rates in Figs 2–4 have
been translated into absolute numbers by applying
national population estimates. Of the four countries,
Ethiopia has the lowest rates but the largest popula-
tion, so the absolute size of the epidemic is notably
larger than in the other three countries. In the four
countries, there were an estimated half a million new
adult HIV infections in 1999 (range: 260 to 960 thou-
sand), with an estimated prevalence of 4.7 million
cases (range: 3.0 to 6.6 million). It is estimated that
more than 370 thousand adults died from AIDS in
these countries in 1999 (range: 266 to 492 thousand).

Discussion

We have presented a method for modifying current
models of the HIV epidemics in sub-Saharan Africa
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to take advantage of all available data and reflect the
uncertainty in estimates produced by fitting models
to a small number of data points. It is important to
note that this method captured one important
component of uncertainty, but excluded others.
Specifically, the maximum likelihood approach
reflected the fact that there were a range of different
past trends that might have fitted the observed data
points on prevalence, but omitted uncertainty as to
the correct model specification, the incubation
distribution, and, perhaps most importantly, the
generalizability of sentinel surveillance data among
pregnant women attending antenatal clinics.

This study addressed one of the major
criticisms of Epimodel, namely that the unmodified
gamma distribution gives a poor representation of the
decline in an epidemic after its peak. The gamma
function was modified to allow the epidemic to settle
into an equilibrium at some level above zero.
Nevertheless, limited evidence is available on precise
equilibrium levels in real epidemics, so further
improvements may be possible if new insights are
derived from transmission models or, preferably,
from direct measures of incidence in populations. It
is also important to recognize that reductions in risk
behaviour following interventions or other changes
may have important benefits that were not well
captured in the parametric curve used in this model.

The model for the incubation period distribution was
another source of uncertainty that might be
addressed in future work. In this area, while statistical
estimation may be informative, the results from
ongoing natural history cohort studies (41–44) will be
most critical.

Extrapolation of model data
One of the key assumptions in the model was that
sentinel data from pregnant women may be extra-
polated to the entire population. There have been a
handful of studies that have addressed the question
of whether prevalence rates in antenatal clinic sites
were representative of the population prevalence
rates. This question can be considered on three levels:
firstly, do prevalence rates in antenatal clinic sites
represent the general population rates in these areas
among women of the same age as clinic attendees?
Secondly, do prevalence rates amongwomen in these
age groups represent the overall prevalence rates in
the adult population in these areas? Thirdly, do
prevalence rates in the sentinel areas represent
national prevalence rates? The answers to these
questions are likely to vary widely across different
settings because of the stage of the epidemic, along
with a host of other factors. The few studies that have
addressed these questions, however, provide valu-
able reference points for further research.
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On the first question, there is evidence that
women attending antenatal clinics may have similar
or lower prevalence rates than women of the same
ages in the general population of these areas. A study
in Zambia (2) found that age-adjusted prevalence
rates in women attending antenatal clinics were 24.4–
27.5% between 1994–96, compared to 31.2% in the
general population in urban areas; and were 12.5%
compared to 17.4% in rural areas. Studies in Mwanza
region, United Republic of Tanzania (12, 45) found
that women aged up to 35 years attending antenatal
clinics had lower prevalence rates than women in the
population of the same ages, although rates among
women older than 35 years were higher in the
antenatal clinic group. Another study in Kagera
region, United Republic of Tanzania (11) found
similar results, with an overall age-adjusted preva-
lence of 29.4% in the general population sample,
compared to 22.4% in the antenatal clinic sample.

On the second question, one of the principal
concerns is whether prevalence levels are different
among men and women. Berkley et al. (46) found in
three studies in Uganda that women had higher
prevalence rates than men, with female-to-male
prevalence ratios of 1.42 in semi-rural communities,

1.56 in rural Rakai district, and 1.31 in a national
serosurvey. Standardizing on the estimated age and
sex distribution in the general population, the ratios
were 1.34, 1.41, and 1.19, respectively. Likewise, the
Kagera study found age-adjusted prevalence rates of
29.4% among females compared to 16.7% among
males. In the Zambia study cited above, age-adjusted
prevalence rates were comparable in males and
females in rural areas (15.4% in males and 17.4% in
females) but significantly lower among males than
females in urban areas (20.9% compared to 31.2%).
The same findings were reported in Mwanza (45),
with lower rates for males than females in urban areas
(9% compared to 15%) and similar rates in non-
urban areas (3% compared to 4%).

Perhaps the most critical question is whether
the sentinel areas provide an adequate representation
of the range of prevalence levels at the national level.
Studies in various countries have found significant
differences across different types of areas, reflecting
important distinctions that may be missed by a broad
classification of sites as urban or non-urban. For
example, one study in Arusha region, United
Republic of Tanzania (10) compared prevalence
rates in high- and low-socioeconomic status urban
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areas, in semi-urban areas, and in rural areas, and
found that prevalence rates among women were
13.3%, 7.4%, 3.4%, and 1.1%, respectively, with
corresponding rates among men of 5.3%, 1.0%, 0%,
and 2.1%, respectively. If the selection of sentinel
areas in a country does not match the population
distribution across urban, peri-urban, and rural areas,
this may be an important source of selection bias in
national prevalence estimates that are based on
sentinel surveillance systems.

The problem of extrapolating from a collec-
tion of individual sites to a national prevalence level

would be greatly facilitated by additional informa-
tion on the different sites. For example, informa-
tion about the catchment areas of particular
hospitals would allow different sites to be weighted
according to the proportion of the population
covered by each site. Additionally, simple geogra-
phical analyses may provide useful information on
which sites are likely to have related epidemics due
to proximity. If more information on the sites could
be incorporated formally into epidemic models, the
validity of the results would probably improve
dramatically.

Table 2. Estimates of HIV incidence, HIV prevalence, and AIDS mortality for adults in Botswana,
Central African Republic, Ethiopia, and Zimbabwe, 1999

Country HIV incidence HIV prevalence AIDS mortality
(x1000) (x1000) (x1000)

MLEa Low High MLE Low High MLE Low High

Botswana 32.1 19.1 43.0 266.3 224.0 300.1 19.0 17.1 21.0

Central African Republic 37.9 22.0 53.1 244.0 170.6 304.1 17.7 13.5 20.7

Ethiopia 320.0 130.9 556.5 2742.0 1534.4 3832.6 213.7 135.3 293.5

Zimbabwe 135.9 92.2 305.6 1481.1 1122.6 2173.5 124.0 99.7 157.2

a MLE = maximum likelihood estimate.
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Future approaches
As work on modelling the HIV/AIDS epidemic
proceeds, it is crucial to undertake rigorous validation
exercises on the modelling methods and results. One
approach would be to compare the model-based
mortality estimates to demographic information on
AIDS-related mortality in a country, although the
challenge of finding adequate population-based
mortality data in sub-Saharan Africa remains daunt-
ing. Preliminary work to validate the model results
presented here, using a series of mortality studies
from Zimbabwe, suggests that these models may
have overestimated the level of the epidemic in
Zimbabwe, but the effects of potential biases in the
mortality data remain to be assessed and may affect
this conclusion. The identification of valid data
sources for demographic estimates of HIV/AIDS-
attributable mortality must be a priority in this area.

In spite of the level of uncertainty that remains
around the epidemic, it is clear that the HIV/AIDS
epidemic is a major public health challenge that
demands an effective policy response. We hope that
this paper will contribute towards continuing efforts
to improve understanding of the epidemic as an
important step in planning and evaluating this
response. n
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Résumé

Modélisation des épidémies de VIH/SIDA en Afrique subsaharienne à partir des données
de séroprévalence des dispensaires de soins anténatals
Objectif Améliorer les bases méthodologiques de la
modélisation de l’épidémie de VIH/SIDA chez l’adulte en
Afrique subsaharienne, avec des exemples provenant du
Botswana, d’Ethiopie, de République centrafricaine et du
Zimbabwe. Il est indispensable de connaı̂tre l’ampleur et
la trajectoire de l’épidémie de VIH/SIDA pour planifier et
évaluer les stratégies de lutte.
Méthodes Des modèles mathématiques ont déjà été
élaborés pour estimer les tendances épidémiques d’après
les données de la surveillance sentinelle des femmes
enceintes. Dans le présent projet, nous avons étendu ces
modèles de façon à pouvoir exploiter au maximum les
données disponibles. Nous avons mis au point une
approche selon la vraisemblance maximale pour
l’estimation des paramètres du modèle et fait appel à

une simulation numérique pour calculer les intervalles
d’incertitude attachés aux estimations.
Résultats Dans les quatre pays dont nous avons
analysé les données, les estimations étaient de
500 000 nouvelles infections par le VIH en 1999 chez
l’adulte (intervalle : 260 000-960 000), 4,7 millions
d’infections établies (intervalle : 3,0-6,6 millions), et
370 000 décès dus au SIDA chez l’adulte (intervalle :
266 000-492 000).
Conclusion Ce projet permet de répondre à certaines
limitations des modèles existants, mais il reste d’impor-
tantes questions à résoudre, et il est en particulier
nécessaire d’élucider la relation entre les données
sentinelles sur les femmes enceintes et l’épidémiologie
du VIH et du SIDA dans la population générale.

Resumen

Modelización de la epidemia de VIH/SIDA en el África subsahariana a partir de los datos
de seroprevalencia de dispensarios de atención prenatal
Objetivo Mejorar la base metodológica para modelizar
la epidemia de VIH/SIDA en la población adulta en el
África subsahariana, con ejemplos de Botswana, la
República Centroafricana, Etiopı́a y Zimbabwe. El
conocimiento de las dimensiones y las tendencias de la
epidemia de VIH/SIDA es fundamental para planificar y
evaluar las estrategias de lucha.
Métodos Los modelos matemáticos previos se desarro-
llaron para estimar las tendencias de la epidemia a partir
de los datos de vigilancia centinela obtenidos con mujeres
embarazadas. En este proyecto hemos ampliado esos
modelos para explotar al máximo los datos disponibles.
Desarrollamos un método de máxima verosimilitud para
calcular los parámetros del modelo y empleamos métodos
de simulación numérica para calcular los intervalos de
incertidumbre en torno a esas estimaciones.

Resultados En los cuatro paı́ses analizados, las
estimaciones arrojaron la cifra de medio millón de
nuevas infecciones de adultos por el VIH en 1999
(intervalo: 260 000–960 000), una prevalencia de
4,7 millones de infecciones (intervalo: 3,0–6,6 millo-
nes) y 370 000 defunciones de adultos por SIDA
(intervalo: 266 000–492 000).
Conclusión Si bien en este proyecto se abordan
algunas de las limitaciones de modelizaciones anteriores,
éste sigue siendo un campo de investigación importante,
en el que destaca la necesidad de esclarecer la relación
entre los datos centinela obtenidos a partir de las mujeres
embarazadas y la epidemiologı́a del VIH y el SIDA en la
población general.
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