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Data-driven methods for imputing national-level incidence in

global burden of disease studies
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Objective To develop transparent and reproducible methods for imputing missing data on disease incidence at national-level for the year 2005.
Methods We compared several models for imputing missing country-level incidence rates for two foodborne diseases — congenital
toxoplasmosis and aflatoxin-related hepatocellular carcinoma. Missing values were assumed to be missing at random. Predictor variables were
selected using least absolute shrinkage and selection operator regression. We compared the predictive performance of naive extrapolation
approaches and Bayesian random and mixed-effects regression models. Leave-one-out cross-validation was used to evaluate model accuracy.
Findings The predictive accuracy of the Bayesian mixed-effects models was significantly better than that of the naive extrapolation method
for one of the two disease models. However, Bayesian mixed-effects models produced wider prediction intervals for both data sets.
Conclusion Several approaches are available for imputing missing data at national level. Strengths of a hierarchical regression approach
for this type of task are the ability to derive estimates from other similar countries, transparency, computational efficiency and ease of
interpretation. The inclusion of informative covariates may improve model performance, but results should be appraised carefully.
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Introduction

An essential prerequisite for estimating global disease burden
using summary health metrics, such as the disability-adjusted
life year,' is the availability of national-level data on the in-
cidence or prevalence of the disease of interest. For some
countries such information is not available, due to financial
constraints, lack of surveillance data or other factors.?

The World Health Organization (WHO) initiative to estimate
the global burden of foodborne diseases, launched in 2006, is ad-
vised by the Foodborne Disease Burden Epidemiology Reference
Group.* For applied studies such as this, methods are required to
estimate disease burden for countries with missing national-level
data. In many studies, extrapolation approaches with little validation
have been employed to fill data gaps, e.g. by assigning the value of a
certain country or the mean value of neighbouring countries to the
country with missing data.””” Such methods are arbitrary and do not
account for uncertainty arising from the imputation of missing data.

Statistical methods are available for the analysis of incom-
plete datasets.®” Alternatively, there are numerous methods
for imputing missing data and for assessing their validity.
Given the availability of information for populations both
with and without missing data, empirical models are typically
fitted to existing data and predictions are generated for missing
values from the fitted model. This method, sometimes termed
farcasting, by analogy with forecasting, therefore generates
predicted health statistics.'' An important step in this method
is the selection of variables allowing robust predictions.

The imputation methods we investigated require that
missingness is uninformative about the missing value, i.e. that

missing data are missing at random.® Resource-poor countries
may be less likely to report the incidence of a given disease,
despite having a higher incidence compared with resource-rich
countries. However, provided that the probability of report-
ing disease incidence is unrelated to disease incidence within
the category of resource-poor countries, such data would be
considered missing at random. This observation implies that
the imputation model should allow for clustering of countries
according to resource-richness. Missing data may also be more
frequent for less populous nations. However, true disease inci-
dence is rarely related to population size. Imputed incidences
for small national populations usually have minor effects on
disease burden estimates at regional or global level.

Our goal was to estimate disease incidence and associated
uncertainty at national level. We describe a method for com-
paring and evaluating relatively simple data-driven imputa-
tion approaches with data sets employed in global burden of
disease studies, assuming that data are missing at random. We
present transparent general approaches that can be applied to
all countries and multiple diseases.

Methods

We compared the performance of several imputation ap-
proaches using two foodborne diseases — congenital toxo-
plasmosis and aflatoxin-related hepatocellular carcinoma
— for which some published incidence data were available.'>"*
Congenital toxoplasmosis, caused by the protozoal parasite
Toxoplasma gondii, may cause ocular and neurological disor-
ders in the unborn child, possibly leading to stillbirth or neo-
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natal death.”” Aflatoxin is a metabolite
produced by the fungi Aspergillus flavus
and Aspergillus parasiticus in maize
and nuts, and is a known human liver
carcinogen."” See Appendix A (available
at: http://www.cbra.be/publications/
imputation-appendix.pdf) for further
details regarding these two example
data sets. The goal was to produce a
complete set of incidence estimates for
WHO Member States for the year 2005.

We compared the performance of
various methods using leave-one-out
cross-validation, because no external
incidence estimates for the missing data
were available. This allowed us to esti-
mate the expected predictive accuracy
of imputation methods in practice. We
classified countries according to 17 food
consumption clusters, using the Global
Environment Monitoring System’s Food
contamination monitoring and assessment
programme.'* All except 19 countries had
been assigned to a food cluster. These 19
countries were assigned to the same cluster
as a neighbouring country (Appendix A).

Imputation approaches

The imputation methods included naive ex-
trapolation and two hierarchical modelling
approaches: (i) random effects regression
models; and (ii) mixed-effects regression
models. The rationale for specifying ran-
dom effects models is that countries with
missing data can “borrow strength” from
other countries within the same cluster,
and clusters with few or no data can “bor-
row strength” from the global population.

Method 1

Foodborne disease incidences among
countries with similar food consump-
tion patterns should be similar. Rather
than fitting a statistical model to existing
data, the naive extrapolation approach
imputes missing incidences as the me-
dian of all other countries with data
within the same food cluster. If data
were missing for all countries within a
cluster, the global median was assigned.
Country-specific 95% prediction in-
tervals were derived via bootstrapping
with replacement. A thousand bootstrap
samples of the number of countries with
observed data were taken and an identi-
cal method applied to each sample. The
unit of sampling was the country-level
incidence.

Method 2

This Bayesian random effects regres-
sion model applies a single random

effect serving as a clustering variable
for different countries. We explored
two possible clustering variables: food
cluster (n=17) and WHO subregion
(n=14). To normalize the distribution
of the outcome variable, the observed
incidences were log-transformed, lead-
ing to a log-normal regression model.
Other approaches to deal with skewed
data were considered such as a normal
model with log-link or a gamma model,
but none were found to differ mean-
ingfully from the log-normal model.
Equations for this model can be found
in Appendix A.

Vague normal priors were specified
for the random model coefficients and
for hyper-parameters. Posterior distri-
butions were derived through Markov
chain Monte Carlo methods using the
rjags package'>'® in R software version
3.0.2 (R Foundation for Statistical Com-
puting, Vienna, Austria). Two chains
were initiated of 20000 posterior sam-
ples each, with the first 15000 discarded.
Standard graphical indicators of non-
convergence were checked. Predicted
values were taken from the posterior
predictive distribution. Example code
is provided in Appendix A.

Method 3

This Bayesian mixed-effects regression
model extends Method 2 by including
disease-specific covariates, leading to a
mixed-effects model. Again, the model
was applied to the log-transformed
observed incidences, and either food
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cluster or WHO subregion was included
as a random effect. Method 3 relies on
predictor variables measured at the
national level. Our hypothesis is that
covariates capturing the socioeconomic,
food production-related and the public
health and hygiene situation within
a given country will be informative
of between-country variation in the
incidence of foodborne diseases. We
describe below how a common set of
potential covariates was derived from
publicly available databases.

World development indicators,"”
the data repository of world health
statistics'® and the database of the Food
and Agriculture Organization of the
United Nations (FAOstat)'? were the
starting point for defining an initial set
of 1200 covariates. This was reduced to
194 variables related to food- or wa-
terborne disease, food production and
consumption, agriculture, environ-
ment, health, demography, economics
and development. If the data point for
the year 2005 was missing, subsequent
years were searched (2006 to 2011 for
world development indicators and
world health statistics variables and
2006 to 2009 for FAOstat variables),
and the nearest year with non-missing
data was used. If two variables were
highly correlated, one was removed,
with the retained member chosen
according to relevance as a general
indicator (for instance, total mortality
rate was chosen in preference to either
male-only or female-only mortality

Table 1. Comparison of three methods for imputing missing incidence data for

congenital toxoplasmosis, 2005

Method

Mean absolute
prediction error
(95% CI)

Global incidence
per 1000 live births
(95% prediction interval)

Method 1: median of other
countries within same
cluster®

Method 2: Bayesian random
effects regression

Food cluster random effect
WHO subregion random effect

Method 3: Bayesian mixed
effects regression®

Food cluster random effect
WHO subregion random effect

0.65 (0.55-0.75)

0.62 (0.54-0.72)
0.55 (0.47-0.63)

0.54 (0.47-0.61)
0.53 (0.46-0.60)

147 (1.45-1.49)

144 (1.38-1.58)
145 (1.39-1.61)

1.50 (1.42-1.72)
1.52 (1.42-1.76)

Cl: confidence interval; WHO: World Health Organization.

¢ Countries were clustered based on food consumption using the global environment monitoring system —
food contamination monitoring and assessment programme.

® The covariate set consisted of percent arable land, percent urban population, annual precipitation, CO,
emissions, rice supply, agricultural value added, neonatal mortality rate and fresh-water sources.

Bull World Health Organ 201 5;93:228—236' doi: http://dx.doi.org/10.2471/BLT.14.139972

229


http://www.cbra.be/publications/imputation-appendix.pdf
http://www.cbra.be/publications/imputation-appendix.pdf

Research
Imputing national-level incidence

rate). To the remaining 112 variables,
an arbitrary missingness threshold of
26% was applied to limit the number
of missing values, reducing the data
set to 65 variables. A final set of 51
variables resulted when non-numeric
variables were removed (Appendix A).
Any missing values in these remaining
51 variables were imputed using the
mice package for R.?” One hundred
imputed data sets were generated
using the predictive mean matching
method. This is useful for bounded
variables such as proportions, since

imputed values are sampled only from
observed values. The simple mean of
each set of 100 imputed data sets was
calculated, implying that uncertainty
in imputed values was ignored. Nine
covariates were log-transformed fol-
lowing inspection of normal quantile-
quantile plots.

The use of principal components
analysis was explored to further reduce
the set of 51 covariates. However, as
this step did not increase model per-
formance, it was excluded from the
reported results.

Scott A McDonald et al.

Analysis

Fixed effects were selected from the set
of potential covariates (Appendix A) in
a data-driven, stepwise manner. First,
least absolute shrinkage and selection
operator regression was used to select
covariates with non-zero regression coef-
ficients.”! We optimized the covariate
estimates and model fit using the tuning
parameter lambda.”>*’ Least absolute
shrinkage and selection operator models
were fitted using the glmnet package
for R

Fig. 1. Comparison of observed and predicted incidence rate of congenital toxoplasmosis in 118 countries, 2005
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Fig. 2. Predicted incidence rate of congenital toxoplasmosis for 74 countries with

missing data, 2005
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Subsequently, backward-stepwise
elimination based on Akaike’s infor-
mation criterion further reduced the
covariate set resulting from the least
absolute shrinkage and selection opera-
tor step, yielding a subset of covariates
that were significantly associated with
disease incidence.”>*

Model implementation was the
same as for the random effects model
(Method 2). As before, vague normal
priors were specified for the model coef-
ficients and hyper-parameters. Example
JAGS code is provided in Appendix A.

Predictive accuracy

The accuracy of the model predictions
was evaluated using leave-one-out cross-
validation.” Data for a single country
were temporarily deleted and the re-
maining data used in an attempt to re-
cover this deleted value. The procedure
was repeated by holding out and pre-
dicting each country in turn. The mean
absolute prediction error was computed
as the prediction error averaged over all
held-out countries. Ninety-five percent
confidence intervals (CI) around mean
absolute prediction error values were
computed via bootstrapping methods;
10000 samples with replacement were
used, and the mean absolute prediction
error was calculated for each sample
separately.

To compare the predictive perfor-
mance of the three models, we applied
the Wilcoxon signed-ranks test to the
paired absolute prediction errors ob-
tained from each imputation method.
We used Bonferroni’s correction for
multiple comparisons.

Effect of database size

We estimated the effect of varying the
number of observations in the database
on the central estimate and 95% CI of
the mean absolute prediction error. As
an example, we used a mixed-effects
regression model of toxoplasmosis.
To simplify the analysis, a frequentist
version was used, yielding virtually
identical results. The database size was
reduced from 115 to 15 countries in
steps of five. Mean absolute prediction
error values for each reduced database
size and bootstrapped 95% CI were com-
puted by taking 100 random samples of
the specified size from the set of coun-
tries with data, and calculating mean
absolute prediction error separately for
each sample.
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Results
Congenital toxoplasmosis

We obtained the toxoplasmosis in-
cidence per 1000 live births for 118
countries, implying 74 countries without
data. Table 1 shows the mean absolute
prediction error for each method and
variant. We compared the predictive
accuracy between the three methods.
For Method 2 and Method 3 we also as-
sessed the effect of including each of the
two possible clustering variables as ran-
dom effect. Compared with Method 1,
predictive accuracy was greater for both
Method 3 variants (P < 0.05), while both
Method 2 variants were statistically
indistinguishable. In general, Method 3
generated larger prediction intervals
(Table 1 and Appendix A). Eight covari-
ates were retained for Method 3, based
on an Akaike’s information criterion
penalty threshold of six. These were:
percent arable land, percent urban
population, annual precipitation, CO,
emissions, rice supply, agricultural value
(as percentage of total gross domestic
product), neonatal mortality rate and
fresh-water sources.

Fig. 1 compares original and im-
puted incidence values, derived using
Method 3, with WHO subregion as
random effect, for the 118 countries with
non-missing data. Imputed incidence
values for the 74 countries with missing
data, also derived using Method 3, are
displayed in Fig. 2. A comparison of the
three methods in terms of the global in-
cidence per 1000 live births is provided
in Table 1 and by WHO subregion in
Appendix A.

Aflatoxin-related hepatocellular
carcinoma

We obtained the incidence of hepato-
cellular carcinoma per 100000 popu-
lation for 33 countries, implying 159
countries without data. Table 2 shows
the mean absolute prediction error
for each method. The performances of
both Method 2 and Method 3 variants
were not statistically distinguishable
from that of Method 1. As seen for
toxoplasmosis, Method 3 generated
larger prediction intervals (Table 2 and
Appendix A). Three covariates were
retained for Method 3, i.e. food supply
from animal products, percentage of
population subject to tuberculosis infec-
tion and energy use (defined as kg of oil
equivalent per capita).

232

Fig. 3 shows original and imputed
incidence values derived using the
method with the lowest mean absolute
prediction error — i.e. Method 3 with
WHO subregion as random effect — for
the 33 countries with non-missing data.

Effect of database size

We used Method 3 to impute missing
values for toxoplasmosis after deleting
some observations from the database.
With decreasing database size, both the
mean and the variability of the mean
absolute prediction error tended to
increase (Fig. 4).

Discussion

We compared the performance of a
simple extrapolation method to im-
putation approaches using regression
models. Variation in predictive accuracy
across regression-based methods was
small. For only one of the two datasets,
the Bayesian mixed-effects regression
models performed significantly better
than the baseline Method 1.

The data-driven approach to selec-
tion of covariates for the mixed-effects
model retained eight covariates for
toxoplasmosis and three for hepatocel-
lular carcinoma. For toxoplasmosis,
these included percent urban popula-
tion and neonatal mortality rate, which
are proxy variables for socioeconomic
development and general population
health. The retained covariates for
hepatocellular carcinoma included

Scott A McDonald et al.

food supply from animal products and
energy use. Transmission of foodborne
infection or the risk of contamination
may be associated with non-health
related variables which serve as prox-
ies for variations in public health and
hygiene between countries.

To quantitatively evaluate the per-
formance of any prediction method, val-
idation is necessary."" For our example
diseases, internal validation was the only
feasible choice, because no external data
sources were available. However, selec-
tion of imputation approaches should
not be based exclusively on numerical
criteria such as prediction error, but also
on biological plausibility, computational
considerations, measures of uncertainty
and user-friendliness. Such criteria be-
come even more relevant when dealing
with sparse data sets. Imputed values
should be reported with an assessment
of their uncertainty and interpreted by
at least one disease expert.

It seems intuitive to include biologi-
cally plausible covariates in the model,
either selected through a data-driven
approach or directly provided by expert
opinion. Our results show that inclusion
of disease-specific covariates may be
associated with greater prediction error
but increased predictive performance
compared to naive Method 1. However,
as evaluations were only based on inter-
nal validation, these results should be
interpreted with caution. Indeed, bet-
ter predictive performance may result
merely from overfitting of available data,

Table 2. Comparison of three methods for imputing missing incidence data for
aflatoxin-related hepatocellular carcinoma, 2005

Method Mean absolute Global incidence

prediction error per 100 000 population
(95% Cl) (95% prediction interval)

Method 1: median of other 1.27 (0.93-1.64) 1.13(1.10-1.16)

countries within same

cluster®

Method 2: Bayesian random

effects regression

Food cluster random effect 1.24 (0.97-1.54) 1.00 (0.91-1.44)

WHO subregion random effect 1.23 (0.95-1.55) 1.05 (0.91-1.64)

Method 3: Bayesian mixed

effects regression®

Food cluster random effect 1.08 (0.87-1.31) 1.17 (0.94-3.77)

WHO subregion random effect 1.08 (0.85-1.32) 1.19 (0.94-3.50)

Cl: confidence interval; WHO: World Health Organization.

¢ Countries were clustered based on food consumption using the global environment monitoring system —
food contamination monitoring and assessment programme.
® The covariate set consisted of food supply from animal products, percentage of population subject to

tuberculosis infection and energy use.
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Fig. 3. Comparison of observed and predicted incidence rate of aflatoxin-related
hepatocellular carcinoma in 33 countries, 2005
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especially with sparse data sets. Also,
out-of-range predictions become more
likely with decreasing dataset size. As
a result, the inclusion of covariates can
lead to unexpected results and should be
appraised carefully by disease experts.
A high proportion of missing
data might limit the application of
these methods. Deleting observations
from the toxoplasmosis database
demonstrated the degree of bias and
variability that may occur when ap-

plying imputation methods to small
numbers of existing data points. This
issue needs to be considered when
presenting and interpreting health
statistics that draw upon model-based
predictions.

We applied the imputation tech-
niques to published point estimates of
disease incidence, although estimates
of uncertainty were also provided with
the original data sets. To fully represent
the uncertainty in predictions, Monte
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Carlo sampling could be applied to take
into account uncertainty in national-
level incidence. However, for purposes
of comparing the degree of bias across
imputation methods, the point estimate
was considered adequate.

The quality of any imputation
model depends on the quality of avail-
able data and underlying study designs.
In the current case, imputed incidences
and estimated uncertainty depend on
existing national-level data, while for
the mixed-effects model, appropriate
data on covariates were also required.
If any of these indicators are unreliable,
or have a non-monotonic relationship
with disease incidence, then predictive
abilities of models would be compro-
mised."" The degree of bias introduced
by the preliminary multiple imputation
step to fill in missing covariate values is
not known.

If missingness and disease inci-
dence are associated, the missing at
random assumption is invalid. However,
establishing such an association is diffi-
cult, since the necessary incidence data
are not available (Appendix A). We were
unable to estimate the degree of poten-
tial bias resulting from fitting models to
disease incidence data from resource-
rich countries to predict incidence rates
for countries with fewer resources.

We have restricted our analysis to
Bayesian methods. However, if unin-
formative priors are specified, Bayesian
and frequentist statistical frameworks
generate similar results. The advantage
of Bayesian methods is that the within-
and between-region variability can
be modelled separately. Furthermore,
informative priors for regression coef-
ficients could be specified based on
previous analyses of other foodborne
diseases with similar incidence dis-
tributions. This can be particularly
relevant for sparse data sets, with the
caveat that in such settings the priors
can strongly influence the results.

Selection of covariates required
several assumptions, and thresholds for
selection were not guided by evidence
alone. Ideally, imputations should be
done in a context-specific manner, with
disease experts introducing specific
covariates for which sufficient global
data are available or eliminating certain
possibilities depending, for instance,
on food consumption habits. Although
time-consuming, this would improve
the biological plausibility of the models.
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Finally, the least absolute shrink-
age and selection operator method is
known for instability with respect to
the set of non-zero covariates retained.
Slight changes in the data can result in
very different sets of retained covari-
ates.”” Ideally, covariate sets would be
selected during each cross-validation
run separately; however, this was im-
practical. We had to assume that the
data are independent. Least absolute
shrinkage and selection operator
penalized regression methods ignore
dependency, although recent develop-
ments try to accommodate for this.
Nevertheless, least absolute shrink-
age and selection operator methods
are relatively robust to collinearity of
covariates.”

Conclusion

Imputation will never be a perfect
substitute for actual data.”®* We
evaluated the predictive accuracy of
various methods to impute missing
national-level disease parameters. We
described data-driven methods for
reducing a large data set of socioeco-
nomic, food production, and demo-
graphic indicator variables, which may
be used to complement imputation
models. Hierarchical models, specify-
ing structural relationships between
countries, can be a useful approach
to the problem of estimating missing
national incidence. M

Scott A McDonald et al.

Fig. 4. Expected mean absolute prediction error associated with database size for

congenital toxoplasmosis
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Note: Bayesian mixed effects regression with WHO subregion as random effect. Error bars represent

bootstrapped 95% confidence intervals.
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Résumé

Méthodes guidées par les données pour imputer l'incidence au niveau national en matiére de charge globale des études sur les

maladies

Objectif Développer des méthodes transparentes et reproductibles
pour imputer les données manquantes sur lincidence d’'une maladie
au niveau national pour I'année 2005.

Méthodes Nous avons comparé plusieurs modéles pour imputer les
taux d'incidence manquants au niveau national pour deux maladies
dorigine alimentaire: la toxoplasmose congénitale et le carcinome
hépatocellulaire lié a I'aflatoxine. Les valeurs manquantes sont
supposées étre manquantes au hasard. Les variables prédictives ont été
sélectionnées en utilisant la régression LASSO (least absolute shrinkage
and selection operator). Nous avons comparé la performance prédictive
des approches d'extrapolation naives et les modeles de régression a
effets aléatoires et mixtes bayésiens. La validation croisée «leave-one-
out» a été utilisée pour évaluer la précision du modéle.

Résultats La précision prédictive des modeles des effets mixtes bayésiens
était significativement meilleure que celle de la méthode dextrapolation
naive pour I'un des deux modéles de maladie. Cependant, les modeles
d'effets mixtes bayésiens ont produit des intervalles de prédiction plus
larges pour les deux ensembles de données.

Conclusion Plusieurs approches sont disponibles pour imputer les
données manquantes au niveau national. Les forces d'une approche
de régression hiérarchique de ce type de tache sont la capacité de
dériver des estimations a partir d'autres pays similaires, la transparence,
I'efficacité des calculs et la facilité d'interprétation. Linclusion de
covariables informatives peut améliorer la performance du modele mais
les résultats doivent étre évalués avec prudence.

Pesiome

Onpepensiemble faHHbIMI MeTOAbI BBOZAA AAHHbIX O PAaCNPOCTPAHEHHOCTU 3a60/1IeBaHMSA HA HALMIOHAJIbBHOM
YPOBHe B paMKax UcciefoBaHuin rmob6anbHoro 6pemeHu 3aboneBaHus

Llenb Pa3paboTaTh Npo3pauyHble 1 BOCMPOV3BOANMbBIE METOb BBOAA
OTCYTCTBYIOWMX AGHHBIX O PACMPOCTPAHEHHOCTH 3aboneBaHva Ha
HaLlMoHanbHOM ypoBHe 3a 2005 rof.

MeTtopabl [1pON3BOAMIOCH CPAaBHEHME HECKONbKUX MOdenemn
BBOJa OTCYTCTBYIOWMX AaHHbIX O YacToTe CrlydaeB 3abonesaHuis
Ha HaUMOHaNbHOM YPOBHe ANA AByX 3aboneBaHuii NuULEBOro
NPONCXOXAEHMA: BPOXKAEHHbI TOKCOMMA3MO3 U apnaToOKCUH-
3aBMCMMaA renaTokeToYHadA KapLumHoma. OTCyTCTBYIOLLME 3HaUeHWA
OblNV pacLieHeHbl Kak He MMetoLLvie onpefeneHHON 3aKOHOMEPHOCTU.
[MporHocTyeckyie nepemeHHble Obln BbIOPaHb C MCMOb30BaHNEM
HaviMeHbllero abCoMoTHOrO 3HauYeHWs ecTeCTBEHHOM YObINn 1
perpeccuv onepatopa Bbibopa. bbino Npov3BefeHo CpaBHEHVE
NPOrHOCTNYECKOW 3QGEKTUBHOCTUM METOAOB MEPBUYHOMN
SKCTPANoONAUMM 1 6aecoBCKMX PErpeccMOoHHbIX MOaenel co
CNyYalHbIMU 1 CMeLLaHHbIMK 3bdeKTamm. Ana oLeHKN TOYHOCTH
Mopenel MCnonb3oBanach NepeKpecTHasd NPoBepPKa C UCKOUEHKEM.

Pesynbrathl [porHocTMyeckas TOUHOCTb GaNecoBCKMX Mopenen
CO CMeLlaHHBIMY 3hdeKTamy Obifla CyLLIECTBEHHO Bbille, YeM MpK
MCNOMb30BaHMN MeTOfa NePBUYHO SKCTPANONALMM ANA OAHOW 13
AByX mMofieneii 3aboneBaHuA. Tem He meHee, 6aieCcoBCKMe Modenm
CO CMeLLIaHHBIMM 3GdeKTamM NO3BOAMAN MONYUMTb Bonee LWMPOKVe
NPOrHOCTUYECKe NHTepBanbl AnA 0berx COBOKYMHOCTeM AaHHbIX.
BbiBoa [lOCTYMHO HECKONBbKO MOAXOAOB K BBOAY OTCYTCTBYHOLIMX
JaHHbIX Ha HaUWOHanbHoM ypoBHe. CUbHbIMM CTOPOHAMM MOAX0Aa
K pelleHuto 3aflay AaHHOro T1Mna C MCMofib30BaHeM MeTofa
MHOFOYPOBHEBOW perpeccun ABATCA BO3MOXHOCTb BbIBEAEHNA
NPUONM3NUTENBbHBIX 3HAYEHW HAa OCHOBE [aHHbIX AN APYrix
CXOXMX CTPaH, NPO3PaYHOCTb, IGGEKTUBHOCTD BbIUMCIEHNI 1
NerkoCTb MHTEPrpeTaumu. BkioueHne MHGOPMATUBHBIX KOBapMaT
MOMET MOBBICUTb 3GOEKTUBHOCTb MOAENM, HO PEe3ysbTaThl IOMKHbI
NoABepraTbCA TATENbHOM OLIEHKe.

Resumen

Métodos basados en datos de imputacion de la incidencia a nivel nacional en los estudios sobre la carga mundial de la

morbilidad

Objetivo Desarrollar métodos transparentes y reproducibles de
imputacion de datos ausentes sobre la incidencia de la morbilidad a
nivel nacional para el afio 2005.

Métodos Se compararon varios modelos de imputacién de las tasas

ausentes de incidencia a nivel nacional para dos enfermedades
transmitidas por los alimentos, la toxoplasmosis congénitay el carcinoma
hepatocelular relacionado con la aflatoxina. Se considerd que los valores
ausentes faltaban al azar. Las variables de prediccion se seleccionaron
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por medio de la contraccién absoluta minimay la regresién del operador
de la seleccién. Se compar6 el rendimiento predictivo de los enfoques
de extrapolacion ingenuay los modelos bayesianos de regresién al azar
y de efectos mixtos, y se empled una validacion cruzada dejando uno
fuera para evaluar la exactitud del modelo.

Resultados La exactitud predictiva de los modelos bayesianos de
efectos mixtos fue significativamente mejor que la del método de
extrapolacion ingenua para uno de los dos modelos de enfermedad.
Sin embargo, los modelos bayesianos de efectos mixtos generaron

Scott A McDonald et al.

intervalos de prediccion mas amplios para ambos conjuntos de datos.
Conclusion Son numerosos los enfoques disponibles para laimputacion
de datos ausentes a nivel nacional. Los puntos fuertes de un enfoque de
regresion jerarquica para este tipo de tareas son la capacidad de obtener
estimaciones de otros paises similares, la transparencia, la eficiencia
informética y la facilidad de interpretacion. La inclusion de covariables
informativas puede mejorar el rendimiento del modelo, aunque se
deben evaluar atentamente los resultados.
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