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Abstract

2013 marked the 250th anniversary of the pre-
sentation of Bayes’ theorem by the philosopher 
Richard Price. Thomas Bayes was a figure little 
known in his own time, but in the 20th century 
the theorem that bears his name became widely 
used in many fields of research. The Bayes theo-
rem is the basis of the so-called Bayesian meth-
ods, an approach to statistical inference that 
allows studies to incorporate prior knowledge 
about relevant data characteristics into statis-
tical analysis. Nowadays, Bayesian methods 
are widely used in many different areas such 
as astronomy, economics, marketing, genetics, 
bioinformatics and social sciences. This study 
observed that a number of authors discussed  re-
cent advances in techniques and the advantages 
of Bayesian methods for the analysis of epide-
miological data. This article presents an over-
view of Bayesian methods, their application to 
epidemiological research and the main areas of 
epidemiology which should benefit from the use 
of Bayesian methods in coming years.

Bayes Theorem; Statistics; Probability Theory

Resumo

O ano de 2013 marca o 250o aniversário da 
apresentação do teorema de Bayes pelo filósofo 
Richard Price à Royal Society em 1763. Thomas 
Bayes foi uma pessoa pouco conhecida em sua 
época, mas no século XX o teorema que leva o 
seu nome tornou-se amplamente utilizado em 
muitas áreas de pesquisa. O teorema de Bayes é 
a base dos chamados métodos bayesianos, um 
procedimento de inferência estatística que per-
mite incorporar na análise o conhecimento pré-
vio sobre características relevantes dos dados. 
Atualmente, os métodos bayesianos são larga-
mente usados em muitas diferentes áreas como 
astronomia, economia, marketing, genética, 
bioinformática e ciências sociais. Em adição, é 
observado na literatura que muitos autores têm 
discutido os recentes avanços do uso dos méto-
dos bayesianos na análise de dados epidemio-
lógicos. No presente artigo, apresentamos uma 
visão global dos métodos bayesianos, sua utili-
dade na pesquisa epidemiológica e os tópicos em 
epidemiologia em que estes métodos podem ser 
extensivamente usados nos próximos anos.

Teorema de Bayes; Estatística; Teoria da  
Probabilidade
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Introduction

The first mathematical formulation using the 
Bayesian method is attributed to Thomas Bayes, 
a British Presbyterian minister. Very little is 
known about his personal history. It is believed 
that he was born around 1701 in Hertfordshire, 
England and died in 1761 in Tunbridge. Many 
facts about his life are speculation such as the 
exact date of his birth and the authorship of a 
book on Theology entitled Divine Benevolence: or 
an Attempt to Prove That the Principal End of the 
Divine Providence and Government is the Hap-
piness of His Creatures, that concerned the mo-
tive behind God’s actions in making the world. In 
1719, he began his studies of logic and theology 
at the University of Edinburgh. The only scientific 
work published during his lifetime was The Doc-
trine of Fluxions, in 1736, in which he defended 
the logical foundation of Isaac Newton’s calculus. 
Two years after his death, his friend Richard Price 
(1723-1791) presented the Royal Society with a 
manuscript authored by Thomas Bayes entitled 
An Essay Towards Solving a Problem in the Doc-
trine of Chances 1. Price said he found the essay 
among Bayes’ papers and in his opinion it “has 
great merit and well deserves to be preserved” 2 
(p. 451). The essay offered the first clear solution 
to a problem of inverse probability, where Bayes 
described how we can calculate the probability 
of the occurrence of an event given the known 
probability of a certain condition. This formula is 
known as Bayes’ theorem. It is interesting to note 
that Richard Price believed that Bayes’ theorem 
was based on theological arguments and it could 
prove the existence of God 3. In 1748, the Scottish 
empiricist philosopher David Hume published 
a book entitled An Enquiry Concerning Hu-
man Understanding. In chapter ten of this work 
entitled Of Miracles, Hume wrote his famous 
argument against miracles 4. Today, some au-
thors claim that Hume’s statements were based 
on arguments taken from Bayes’s theorem 5,6,7. 
Despite these philosophical ideas, Bayes’ essay 
seemed to have been forgotten until the publica-
tion of the book entitled Théorie Analytique des 
Probabilités by the French mathematician and 
astronomer Pierre-Simon Laplace, in 1812. It is 
believed that Laplace was not familiar with the 
work of Thomas Bayes and he independently de-
veloped a more formal version of Bayes’ theorem.

Currently, Bayesian ideas are used in many 
fields of technology and research, such as mod-
ern computers which use Bayesian filters to clas-
sify emails and detect spam 8. Another example 
of the modern use of Bayesian ideas is in robots 
which, based on a Bayesian framework 9 and a 
Bayes network based system, distinguished ter-

restrial rocks from meteorites in the first robotic 
identification of a meteorite in 2000 in the El-
ephant Moraine in the Antarctic 10. In addition, 
NASA’s Mars Exploration Rover mission has been 
using Bayesian classification algorithms to study 
the physical properties of the surface of Mars 11. 
Nowadays, Bayesian methods are widely used 
in many different fields of research, such as as-
tronomy 12, economics and econometrics 13,14, 
marketing 15, actuarial science 16, psychological 
research 17, genetics 18,19, evolutionary biology 20, 
bioinformatics 21, demography 22, social scienc-
es 23, public health 24, drug development 25 and 
clinical trials 26,27. 	The use of Bayesian methods 
in epidemiological studies has been discussed by 
several authors 28,29,30,31 and Congdon 32 claims 
that the Bayesian approach is very useful for 
modeling epidemiological datasets, since they 
allow the control of possible confounding influ-
ences on disease outcomes and the establish-
ment of causal and dose-response relationships. 
In addition, Dunson 28 showed that the use of 
Bayesian techniques in epidemiological studies 
is a powerful mechanism for incorporating in-
formation from previous studies and controlling 
confounding. Appropriate methods for dealing 
with interactions between variables and con-
founding effects are essential for epidemiologi-
cal studies, and in this respect Bayesian methods 
can be very useful. Bayesian methods represent 
a totally different way of thinking about research 
methods where the researcher’s previous knowl-
edge and experience have an important effect on 
inference and decision-making. 

The traditional approach to statistical infer-
ence is the frequentist (or classical) technique, 
where results are interpreted in terms of the fre-
quency of occurrence of an event observed in 
a hypothetically large number of repetitions of 
the experiment. Frequentist inferences are based 
only on observational data, while Bayesian infer-
ence assumes that prior knowledge can be for-
mally incorporated into the analytical process. 
We can therefore say that the Bayesian research 
method is based both on an empirical world 
represented by the sample data and on human 
reasoning represented by the accumulated expe-
rience of the researcher.

In the present article, we present an overview 
of the Bayesian approach together with a brief 
description of the Bayesian statistical inference 
procedure and comparison with the standard 
frequentist approach. We also discuss the advan-
tages of the Bayesian approach over the tradi-
tional research method applied to the analysis of 
epidemiological data and discuss some areas of 
epidemiology which should benefit from the use 
of Bayesian methods in coming years.
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Are we in the Bayesian era?

In 1996, David Moore published an article 33 
that discussed the possibility of teaching Bayes-
ian inference on a first statistics course for stu-
dents from different backgrounds. He argued 
that Bayesian methods were rarely used in prac-
tice and teaching them would deprive students 
of instruction about more common statistical 
methods. It is possible that this statement was 
based on limitations caused by the time needed 
for software and hardware to analyze data using 
a Bayesian approach. Major advances in software 
and hardware in the last 20 years have been one 
of the factors that has led to a sharp increase in 
the use of Bayesian methods. To obtain an idea 
of the current use of Bayesian methods in health 
research, a search was made in PubMed using 
the keyword “Bayesian”. The annual number 
of articles is presented graphically in Figure 1 
which shows that the first article using the term 
“Bayesian” indexed in PubMed was published in  
1963 34. After this first publication, we observe a 
very modest increase in the number of articles 
up to the middle of the 1980s, after which a large 
increase can be observed. It is important to re-
member that portable personal computers on-
ly became popular in the middle of the 1980s, 

significantly contributing to the use of Bayesian 
methods, since the approach is usually depends 
on computational algorithms. A large increase in 
the number of published articles using the term 
Bayesian can be observed toward the end of 20th 
century. It is possible that this increase was due 
to the emergence of new software adapted to 
Bayesian analysis, such as the free software Win-
BUGS 35. This software uses simulation meth-
ods, such as the popular Markov Chain Monte 
Carlo (MCMC) methods 36, and was possibly the 
most important computational advances to have 
popularized the use of Bayesian methodology. 
The first version of WinBUGS for Windows was 
made available in 1997 37. Today, OpenBUGS is 
the open-source version of WinBUGS and can 
be freely downloaded from the project website 
(http://www.openbugs.info/w/Downloads).

In 2010, 2.56 in every 1,000 articles indexed 
in PubMed contained the term Bayesian (Fig-
ure 1), showing the growing use of Bayesian 
methods in health research since the publica-
tion of Moore’s article 29 and suggesting that 
Bayesian statistics is actually an important is-
sue to students who are starting their studies 
to become researchs. The advantages of the use 
of Bayesian methods in specific fields of knowl-
edge, such as genetics 18, oncology 38 and para-

Figure 1

Results of the search of PubMed for articles containing the term Bayesian. The line shows the number of articles containing 

the term Bayesian published each year divided by the total number de articles indexed in that year (x 1,000).
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sitology 39, have therefore been discussed in 
a number of research articles available in the  
literature.

One of the reasons for the widespread use of 
Bayesian methods may be related to the ease with 
which statistical inferences can be made even 
with complex problems. It is therefore expected 
that the use of Bayesian methods will continue to 
increase in response to the demands of ever more 
complex problems in the health field.

A practical example: estimating disease 
prevalence

In order to illustrate Bayesian inference pro-
cedures, let us consider a simple example in 
which we estimate the prevalence θ of a disease 
among the inhabitants of a given community. 
A parameter is defined as an unknown numeri-
cal characteristic of a population. Prevalence θ 
is therefore a parameter and may be estimated 
using a frequentist or Bayesian approach. First, 
let us describe how this is done using the fre-
quentist approach. A sample of size n is repre-
sented by a probability function, defined as the 
likelihood function and denoted by f(x|θ). In the 
frequentist approach, inference is based only on 
the likelihood function. Xi is a random binary 
variable which assumes the value of 1 if the i-
th individual has the disease of interest and the 
value of 0 if the i-th individual does not have the 
disease: (i = 1,…,n). Thus, the probability of the 
i-th individual having the disease is P(Xi = 1) = 
θ, and the probability of the individual not hav-
ing the disease is P(Xi = 0) = 1 – θ, where 0≤θ≤1. 
In this case, we say that Xi follows a Bernoulli 
distribution with success probability θ, and its 
probability function is given by P(Xi = xi) = θ xi 
(1 – θ)1 – xi, where xi assumes the value 0 or 1. 
Assuming that X1, X2, …, Xn are independent 
random variables, that is, assuming that an 
individual having the disease does not affect 
the probability of another individual having 
the disease, the likelihood function is given by

The maximum-likelihood estimation (MLE) 
procedure is a frequentist method commonly 
used to estimate the parameters of a statistical 
model 40,41. Using the MLE method the estimate 
of a parameter θ is given by the value of this pa-
rameter in the parameter space (set of all pos-
sible values of the parameter) that maximizes the 
likelihood function f(x|θ ). For this purpose, we 
can use differential calculus tools to obtain an es-
timator �^  of θ. In practice, it is often more conve-
nient to maximize the logarithm of the likelihood 

∑n

i=1
xi

xi

f ( ) =x (1 – ) –(1 – ) .= =x x xP X( )n 1 –n n
i =1 i =1i i

i i� � �� �� �= ∑ ∑n n
i =1 i =1x xi i

.∑n

n

number of individual with the disease in the sample
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i =1 xi

�
^

= =

f 0 <       < 1, ,
1

a – 1 b – 1=
B a,b( )
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∑n

i=1

function, also called the log-likelihood function. 
If we set the first derivative of the log-likelihood 
function equal to zero, the maximum likelihood 
estimator �^  of θ is given by

∑n

n

number of individual with the disease in the sample

total number of individuals in the sample
i =1 xi

�
^

= =

This is a well-known expression which can be 
found in many widely used epidemiology text-
books. Inference is then based on a hypothetical 
series of data sets collected under identical con-
ditions. For example, a 95% confidence interval 
is a range of values calculated from the sample 
observations, with 95% certainty that all possible 
random samples drawn from the same popula-
tion using the same sampling scheme would gen-
erate intervals containing the true value of the 
parameter. However, a 95% confidence interval 
does not mean that there is a 95% probability that 
the calculated interval contains the true value of 
the parameter. Although this interpretation is 
quite intuitive, it is not valid since the frequentist 
method cannot assign probabilities to any par-
ticular parameter.

The frequentist approach assumes that the 
parameter of interest is a fixed quantity, while in 
the Bayesian approach parameter uncertainty is 
represented by a probability distribution. From 
a statistical viewpoint, this is perhaps the most 
striking difference between the traditional fre-
quentist approach and the Bayesian approach 
and is cause of much controversy, since frequen-
tist statisticians do not accept the parameters to 
be represented by random variables.

In Bayesian analysis, a prior probability 
distribution for all parameters in the statistical 
model is necessary. On observing that the prev-
alence of the disease is in a limited range (0,1), 
a plausible prior probability distribution is as-
signed to a parameter θ given by a beta distribu-
tion 42, a flexible probability distribution which 
can take many forms depending on the values of 
a and b. In this case, the prior distribution f (θ )
for θ  has a probability density function given by

f 0 <       < 1, ,
1

a – 1 b – 1=
B a,b( )

(1 – )(   ) �� � �

where a and b are known values, and B(a,b) is the 
beta distribution in which a and b are the hyper-
parameters of the prior distribution. Hyperpa-
rameters may be chosen by a panel of experts or 
by using results from previous studies. For exam-
ple, let’s say that an experienced epidemiologist 
believes that the prevalence of the disease in a 
specified population is around 15% and is almost 
certain that prevalence is no less than 2% and 
no greater than 30%. Based on this information, 
we now need to find the values of the constants 
a and b. One possible strategy is to approximate 
the mode of the beta distribution to 15% and 
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its standard deviation to one quarter of the dis-
tance between the limits 2% and 30% (for further  
details see Browne 200143) thus giving a = 4.96 
and b = 23.45. The graph in Figure 2 shows the 
probability density function of the beta distri-
bution with parameter values of 4.96 and 23.45 
mathematically representing the prior informa-
tion given by the epidemiologist. It can be ob-
served that the maximum value of the probability 
density function is 15% (the mode). In addition, it 
can be seen that the probability of prevalence be-
ing higher than 30% or lower than 2% is low. This 
process is called prior probability elicitation 44.

The likelihood function plays a key role in sta-
tistical inference in both frequentist and Bayes-
ian approaches. The Bayes’ theorem says that 
the distribution of θ given the data (named pos-
terior distribution) is proportional to the prod-
uct of the prior distribution f (θ ) and likelihood 
function f (x|θ ). Bayes’ formula establishes that
f (x|θ )  f (θ ) x f (x|θ ).

Thus, we have
f (x|θ ) = k x θ a + ∑

n

i=1 
xi – 1

 (1 – θ ) b+n–∑n

i=1 
xi – 1

where k is a constant value known as the normal-
izing constant. The posterior distribution for θ 
also follows a beta distribution, since the expres-
sion for f (θ |x) given above is in the form of a beta 
distribution. When the posterior distribution  
f (θ |x) is in the same family as the prior distribu-
tion f (θ ), we say that f (θ ) is a conjugate prior 
distribution for θ.

Let us suppose a sample of size n = 100 indi-
viduals from the population of interest, of which 
22 individuals have the disease in interest. The 
maximum likelihood estimate for θ is given by 
22/100 = 22%. Considering the Bayesian ap-
proach, the posterior distribution for θ is pro-
portional to f (θ |x)  θ 4.96+22–1(1– θ )23.45+100–22–1=
θ 26.96–1(1– θ )101.45–1, since a = 4.96, b = 23.45, 
∑n

i=1
 = 22 and n = 100. Thus, f (θ |x) follows a beta 

distribution with parameters 26.96 and 101.45.
Figure 3 compares the prior and posterior 

distributions for θ. We note that the curve that 
represents the posterior distribution is the lower 
dispersion curve, suggesting that the posterior 
distribution provides more information about θ 
than the prior distribution. Considering that the 
mean of a random variable that follows a beta 
distribution with parameters a and b is given by 
a/(a+b), the Bayesian estimate of disease preva-
lence is given by 26.96/(26.96+101.45) = 21%.

The graph in Figure 4 shows the posterior dis-
tribution for θ, where the gray area corresponds 
to 95% of the total area under the curve. This area 
represents the 95% credible interval, which in 
this case is within a range of 14.4 to 28.4%. The 
credible interval is the Bayesian equivalent of the 
frequentist confidence interval, and we can in-
terpret that there is a 95% probability that the 
true prevalence θ lies within this range.

Figure 2

Prior probability distribution for θ, given by a beta distribution with parameters 4.96 and 23.45. The dashed line represents 

the mode of the distribution (maximum value).
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Figure 3

Comparison of prior probability distribution for θ, given by a beta distribution with parameters 4.96 and 23.45 (dashed line) with the posterior distribution for 

θ, given by a beta distribution with parameters 26.96 and 101.45 (continuous line).

Figure 4

Posterior distribution for θ given by a beta distribution with parameters 26.96 and 101.45, where the gray area describes a 

95% credible interval.
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The use of noninformative prior  
distribution

The use of a noninformative prior distribution 
is suggested when there is total ignorance about 
the parameter of interest. When using nonin-
formative prior distribution for the parameter 
θ  the Bayesian estimates tend to be close to the 
corresponding maximum-likelihood estimates, 
since in this case f (θ ) has minimal impact on 
the posterior distribution f (θ |x). There are differ-
ent techniques for constructing noninformative 
prior distributions, such as the Jeffreys prior 45 
based on the so-called Fisher information, a con-
cept used in the theory of maximum-likelihood 
estimation. Using the problem presented in the 
previous section, the Jeffrey prior is defined in 
terms of a beta distribution with parameters 0.5 
and 0.5 (see, for example, Box & Tiao 46). In this 
case, the posterior distribution f (θ |x) follows a 
beta distribution with parameters 22.5 and 78.5, 
and the Bayes estimate of prevalence is 22.5/
(22.5+78.5) = 22.3%. Noninformative prior distri-
butions are useful when we have no knowledge 
about the parameter of interest or when a more 
objective analysis is required. Bayesian analysis 
using noninformative prior distribution has a 
number of advantages over maximum-likelihood 

estimation in situations where the likelihood 
function is particularly complex and traditional 
optimization methods are not well suited to such 
problems.

Table 1 illustrates frequentist and Bayesian 
estimates (posterior means) of prevalence based 
on different sample sizes and choices of prior dis-
tribution for θ . For all assumed sample sizes we 
fixed ∑n

i=1
 xi/n = 22%. We also assigned beta (4.96, 

23.45) as an informative prior distribution for θ, 
beta (0.5, 0.5) as a noninformative prior distribu-
tion and beta (10,10) as an example of an inad-
equate prior distribution based on an implau-
sible expert opinion. Bayes estimates based on 
the noninformative prior distribution are simi-
lar to the frequentist estimates. As sample size 
increases, we can observe that frequentist and 
Bayes estimates become more similar, even in 
the case of the inadequate prior distribution for 
θ. This occurs because in large samples the con-
tribution of the likelihood function to the poste-
rior distribution is relatively greater in relation to 
the adopted prior distribution for the parameter.

All calculations and simulations were carried 
out using the R software (The R Foundation for 
Statistical Computing, Vienna, Austria; http://
www.r-project.org).

Table 1

Frequentist and Bayesian prevalence estimates (posterior means) based on different sample sizes and choices of prior distribution for θ.

n ∑n

i=1
xi

Frequentist estimation Bayesian estimation

Prior θ ~ Beta (4.96, 23.45) Prior θ ~ Beta (0.5, 0.5) Prior θ ~ Beta (10, 10)

Estimate  

(95% confidence interval)

Estimate  

(95% credible interval)

Estimate 

(95% credible interval)

Estimate 

(95% credible interval)

100 22 0.22

(0.1388, 0.3012)

0.210

(0.1442, 0.2842)

0.223

(0.1475, 0.3084)

0.267

(0.1917, 0.3489)

150 33 0.22

(0.1537, 0.2863)

0.213

(0.1560, 0.2756)

0.222

(0.1595, 0.2912)

0.253

(0.1906, 0.3207)

200 44 0.22

(0.1626, 0.2774)

0.214

(0.1637, 0.2697)

0.221

(0.1668, 0.2812)

0.245

(0.1909, 0.3043)

250 55 0.22

(0.1687, 0.2713)

0.215

(0.1691, 0.2654)

0.221

(0.1720, 0.2744)

0.241

(0.1917, 0.2934)

500 110 0.22

(0.1837, 0.2563)

0.218

(0.1834, 0.2537)

0.221

(0.1853, 0.2579)

0.231

(0.1956, 0.2679)

1,000 220 0.22

(0.1943, 0.2457)

0.219

(0.1940, 0.2445)

0.220

(0.1951, 0.2465)

0.225

(0.2003, 0.2516)
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Advantages of Bayesian methods

Several authors claim that the main advantage 
of the Bayesian approach over the frequentist 
method is that it allows the incorporation of prior 
knowledge by specifying appropriate prior prob-
abilities 47,48. However, the advantages of Bayes-
ian methods are not limited to the possibility of 
incorporating out-of-sample information into 
the analyses. For example, Bayesian methods 
are especially useful for statistical inference of 
complex models which present significant dif-
ficulties for frequentist methods. Calculating 
the maximum of very complex likelihood func-
tions can be a difficult task in practice, despite 
the advances in computer software and hard-
ware in recent years. In such situations, the fre-
quentist approach usually involves numerical 
tools, such as the traditional Newton-Raphson 
method. However, convergence problems may 
occur or solutions may be highly dependent on 
initial values. Bayesian methods can overcome 
this problem by using the MCMC 49,50 methods, 
that allow samples to be simulated using the pa-
rameters of interest. In this approach, inference 
is therefore based on the sample, remembering 
that the Bayesian approach treats the parameters 
as random variables. In some special situations, 
this procedure can be simplified by the use of a 
Bayesian technique based on a procedure called 
data augmentation introduced by Tanner & 
Wong 51. This procedure “augments” the ob-
served data to simplify the likelihood function.

Another important aspect of the frequentist 
inference approach concerns the identifiability 
of the parameters of a given model. The prob-
lem of identifiability occurs when there are more 
parameters than degrees of freedom. In such 
situations, parameter estimation based on the 
frequentist approach is a difficult task. Degrees 
of freedom can be understood as “the number of 
independent units of information in a sample rel-
evant to the estimation of a parameter or calcula-
tion of a statistic” 52 (p. 118). A practical example 
is the assessment of new diagnostic tests which 
have not achieved the gold standard. Joseph et al. 
53 showed that in these types of situations, where 
there are more parameters (sensitivity, specificity 
and disease prevalence) than information from 
the data, Bayesian methods are able to provide 
estimates for these measures.

Although the literature includes studies that 
used Bayesian hypothesis testing, the main focus 
of the Bayesian method is estimating parameters 
and not hypothesis testing. For example, given 
two hypotheses H1 and H2, a Bayesian hypothesis 
test compares the probability of the observed da-
ta D given H1, denoted by P(D|H1), and the prob-

ability of the observed data D given H2, denoted 
by P(D|H2). The ratio BF = P(D|H1)/P(D|H2) is the 
Bayes factor 54, which quantifies the evidence 
from data for H1 in relation to H2. It should be 
noted that this procedure is different from the 
traditional null hypothesis significance testing. 
While the results of frequentist hypothesis tests 
are usually expressed as p-values, the results of 
Bayesian hypothesis tests are expressed as Bayes 
factors. P-values are difficult to interpret and are 
regularly misinterpreted by health researchers, 
while Bayes factors are more easy to interpret.

Recent trends in Bayesian analysis

The following is non-exhaustive list of areas of 
epidemiological research which should benefit 
from the use of Bayesian methods over the com-
ing years.

Spatiotemporal modeling

Ecological studies involve the description of 
the geographical distribution of a disease or an 
event of interest and associated factors. In this 
context, spatial autoregressive models have been 
extensively used in data analysis and a popular 
modeling approach has been through the con-
ditionally autoregressive (CAR) distribution and 
their generalizations. These models are relatively 
flexible and can accommodate different struc-
tures of spatial correlation and longitudinal 
data, as well as the presence of covariates. The 
estimation of the parameters of these models 
based on frequentist inference methods can be 
a difficult task due to the complexity of the likeli-
hood function, and Bayesian methods provide 
a convenient alternative to deal with this model 
structure. This type of modeling is facilitated by 
the use of the software OpenBUGS, that allows 
sample simulation for CAR distribution and mul-
tivariate extension 55,56. In a broader sense, these 
spatiotemporal models 57 can be classified as a 
type of hierarchical model. Multilevel or hierar-
chical models are useful for the analysis of data 
structured in groups, which is common in epide-
miological studies.

Models based on distributions rather than
normal curve

The use of models based on normal distribu-
tion is quite common in epidemiological studies. 
There is a belief that nonparametric hypothesis 
testing should be used when the normality as-
sumption is not satisfied, but this is not necessar-
ily true due to the existence of generalized linear 



TIME TO ADOPT BAYESIAN METHODS 711

Cad. Saúde Pública, Rio de Janeiro, 30(4):703-714, abr, 2014

models (GLM), a very general class of statistical 
models that includes many probability distri-
butions. In addition, traditional nonparametric 
tests only provide p-values, while measures of 
the size of the association between groups are 
essential for epidemiological research. The rela-
tionship between dependent discrete variables 
and explanatory variables can be explored by us-
ing models based on Poisson, binomial, nega-
tive binomial or beta-binomial distributions, 
depending on the amount of data dispersion. 
Count data with excess zeros 58 and truncated 
data 59 are also common in epidemiological stud-
ies and specific regression models are required to 
deal with this. Bayesian methods can be very use-
ful in these modeling applications, since they en-
able us to estimate parameters and related mea-
sures of association in complex models or where 
asymptotic assumptions are not appropriate due 
to sparse data or small sample sizes.

Models for survival data based on more 
complex distribution

In epidemiological studies, parametric survival 
models are usually based on the Weibull, lognor-
mal or gamma distributions. Alternative distri-
butions for time-to-event data have been used 
by studies mentioned in the literature in recent 
years, allowing the addition of a parameter rep-
resenting the proportion of individuals which 
are “immune” to the event of interest 60. These 
distributions are extensions of usual distribu-
tions including a greater number of unknown pa-
rameters 61,62. Parameter estimation in survival 
models based on these distributions can be chal-
lenging, especially when covariates are involved, 
since asymptotic properties cannot be assured. 
Bayesian analysis could be a promising alterna-
tive for this type of modeling because the use of 
MCMC methods are capable of dealing with the 
complexity of the resulting likelihood function.

Multivariate copula models

Copula functions 63 are tools used to construct 
and simulate multivariate distributions. For  
example, copula functions can be used to study 
the joint distribution of the successive survival 
times 64, multiple dependent diagnostic tests 65 
or the association of risk factors for two or more 
diseases simultaneously. Bayesian methods can 
accommodate different copula functions and 
may therefore be useful for many epidemiologi-
cal investigations that use multivariate data.

Concluding remarks

Since Bayesian methods allows the incorpora-
tion of relevant prior knowledge or beliefs into 
the analysis, the researcher is no longer just an 
observer in the research process and his or her 
experience becomes an active component to ob-
tain inferences of interest. This in itself is often 
seen as a controversial aspect of Bayesianism, 
since the traditional scientific method relies on 
a positivist approach and has been proposed to 
avoid subjective analysis. The Bayesian method 
offers a different way of thinking about research 
and we believe that it can make a valuable con-
tribution to the development of knowledge in a 
number of fields apart from epidemiology.

From a statistical viewpoint, we believe that 
the major advantage of the Bayesian approach is 
its extreme flexibility. The availability of MCMC  
methods allows the analysis of a wide range of 
statistical models which could be applied to 
epidemiologic research, such as hierarchical 
models, longitudinal models and more complex 
models applied to specific design studies 66,67 or 
unusual data structures.

Currently, good Bayesian analysis software 
is available, such as OpenBugs, SAS and several 
R software libraries. An important advantage of 
OpenBugs and R programs is that they are free-
ly available on the internet. However, the use 
of these programs requires some knowledge of 
programming language. Therefore, researchers 
who are not proficient in computer program-
ming may have some difficulties with Bayesian 
modeling, and this is an obstacle to popularizing 
Bayesian methods in epidemiological research. 
This situation may also be aggravated by a lack of 
professional statistical support in health research 
institutions.

Despite these potential difficulties, this study 
observed a sharp increase in the number of stud-
ies using Bayesian methods and this trend looks 
set to continue. It can therefore be concluded 
that epidemiologists, clinicians and health pro-
fessions students interested in a research career 
should receive appropriate training in Bayesian 
methods to be able to deal with more complex 
problems. 
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Resumen

Durante el año 2013 se conmemora el 250 aniversario 
de la presentación del teorema de Bayes por el filósofo 
Richard Price ante la Royal Society en 1763. Thomas 
Bayes era una persona poco conocida en su época, pero 
en el siglo XX el teorema que lleva su nombre se utilizó 
ampliamente en muchos campos de investigación. El 
teorema de Bayes es la base de los llamados métodos 
bayesianos, procedimiento de inferencia estadística 
que permite incorporar en el análisis el conocimiento 
previo acerca de las características relevantes de los da-
tos. En la actualidad, los métodos bayesianos son am-
pliamente utilizados en muchas áreas diferentes, tales 
como la astronomía, la genética, la bioinformática y 
las ciencias sociales. Muchos autores han discutido los 
recientes avances en el uso de métodos bayesianos en el 
análisis de los datos epidemiológicos. En este artículo se 
presenta una visión general de los métodos bayesianos, 
su utilidad en la investigación y en epidemiología en 
donde los métodos bayesianos pueden utilizarse exten-
samente durante los próximos años.

Teorema de Bayes; Estadística; Teoría de la  
Probabilidad
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