SciELO - Scientific Electronic Library Online

 
vol.24 suppl.4PAH biomarkers for human health risk assessment: a review of the state-of-the-artTreatment of postmenopausal osteoporosis in women: a systematic review author indexsubject indexarticles search
Home Page  

Cadernos de Saúde Pública

Print version ISSN 0102-311X

Abstract

ABREU, Mery Natali Silva; SIQUEIRA, Arminda Lucia; CARDOSO, Clareci Silva  and  CAIAFFA, Waleska Teixeira. Ordinal logistic regression models: application in quality of life studies. Cad. Saúde Pública [online]. 2008, vol.24, suppl.4, pp. s581-s591. ISSN 0102-311X.  http://dx.doi.org/10.1590/S0102-311X2008001600010.

Quality of life has been increasingly emphasized in public health research in recent years. Typically, the results of quality of life are measured by means of ordinal scales. In these situations, specific statistical methods are necessary because procedures such as either dichotomization or misinformation on the distribution of the outcome variable may complicate the inferential process. Ordinal logistic regression models are appropriate in many of these situations. This article presents a review of the proportional odds model, partial proportional odds model, continuation ratio model, and stereotype model. The fit, statistical inference, and comparisons between models are illustrated with data from a study on quality of life in 273 patients with schizophrenia. All tested models showed good fit, but the proportional odds or partial proportional odds models proved to be the best choice due to the nature of the data and ease of interpretation of the results. Ordinal logistic models perform differently depending on categorization of outcome, adequacy in relation to assumptions, goodness-of-fit, and parsimony.

Keywords : Logistic Models; Statistical Methods and Procedures; Quality of Life.

        · abstract in Portuguese     · text in English     · pdf in English