SciELO - Scientific Electronic Library Online

vol.5 issue1Full adult height of women in Cordoba, Argentina, and an exploration of secular trends 1978­1988Neurological development at age two of children who had been treated in a neonatal intensive care unit author indexsubject indexarticles search
Home Page  

Services on Demand




Related links


Revista Panamericana de Salud Pública

On-line version ISSN 1680-5348Print version ISSN 1020-4989


SANTAMARINA MIJARES, Alberto et al. The Romanomermis iyengari parasite for Anopheles pseudopunctipennis suppression in natural habitats in Oaxaca State, Mexico. Rev Panam Salud Publica [online]. 1999, vol.5, n.1, pp.23-28. ISSN 1680-5348.

In September and November 1996 Romanomermis iyengari Welch, a parasite of larval mosquitoes, was released in 44 natural larval habitat sites of Anopheles pseudopunctipennis Theobald in an attempt to reduce the larval populations of this important malaria vector. The selected treatment sites ranged in size from 5 to 500 m2. The study was carried out in Pochutla District of Oaxaca State, on the Pacific coast of Mexico. Chemical pesticides to reduce vector populations have been the principal tool in malaria suppression campaigns. However, the excessive use of these chemicals has created pesticide resistance and other serious collateral problems. Therefore, a biological control project using agents that are pathogens of Anopheles larvae was initiated in 1996. The principal objective was to establish mass rearing capacities for R. iyengari. Detailed methodology for rearing and introducing these nematodes into mosquito larval habitats was established at the National Polytechnic Institute of Oaxaca State. Before application of the parasites to larval habitats, site characteristics were determined, including size, depth, aquatic vegetation, salinity, pH, conductivity, temperature, and pretreatment larval density. With a compressed air sprayer, infective mermithid parasites were released at rates of either 2000 or 3000/m2, and the parasites produced high levels of infection. Anopheles populations were sampled 72 h posttreatment, and the larvae obtained were taken to the laboratory and examined through microscopic dissection to determine infection levels and mean parasitism. Nematode parasitism ranged from 85 to 100% at all the treatment sites, even though no previous information concerning field parasitism of An. pseudopunctipennis by R. iyengari has been reported. In addition, a significant reduction of mosquito larval density at the treatment sites was found five days after the nematode application. Levels of parasitism were indicative of the number of mosquito larvae killed by the treatment since infected larvae never progressed to the pupal stage. Results from sampling nine of the sites 2 months after the initial application of nematodes indicated that a high number of mosquito larvae were infected by parasites that had emerged from eggs previously deposited in the stratum. This work suggests the potential of this mermithid to reduce An. pseudopunctipennis populations in Oaxaca State.

        · abstract in Spanish     · text in English     · English ( pdf )