SciELO - Scientific Electronic Library Online

 
vol.25 issue5Public health and the marketManagement of needed health care workers in primary care: automating the calculation author indexsubject indexarticles search
Home Page  

Gaceta Sanitaria

Print version ISSN 0213-9111

Gac Sanit vol.25 n.5 Barcelona Sep./Oct. 2011

http://dx.doi.org/10.1590/S0213-91112011000500015 

NOTA METODOLÓGICA

 

SART (Statistical Analysis of Rates and Trends): herramienta vía web para el cálculo estadístico de indicadores poblacionales

Statistical Analysis of Rates and Trends (SART): a web-based tool for statistical calculation of population indicators

 

 

Laura Estebana, Ramon Clèriesa,b, Klaus Langohrc,d, Jordi Gálveza, Laura Parejaa,e, Josep M. Escribàa y Josepa Ribesa,b

aPla Director d'Oncologia de Catalunya, l'Hospitalet de Llobregat, Barcelona, España
bDepartament de Ciències Clíniques, Universitat de Barcelona, l'Hospitalet de Llobregat, Barcelona, España
cGrup de Recerca Clínica en Farmacologia Humana i Neurociències, Institut Municipal d'Investigació Mèdica, Barcelona, España
dDepartament d'Estadística i Investigació Operativa, Universitat Politècnica de Catalunya, Barcelona, España
eDepartament d'Economia de l'Empresa, Universitat Autònoma de Barcelona, Sabadell, Barcelona, España

Dirección para correspondencia

 

 


RESUMEN

Se propone una herramienta vía web (SART: http://regstattools.net/sart.html) que automatiza los cálculos para la obtención de distintos indicadores poblacionales importantes para el control de enfermedades o eventos de la salud. Se estructura en cuatro módulos: a) una descriptiva que incluye el cálculo del porcentaje, el número de casos, la tasa cruda, la tasa ajustada, la tasa truncada y la tasa acumulada; b) la estimación del porcentaje de cambio anual de las tasas; c) el cálculo de casos esperados, y d) la razón de incidencia o mortalidad estandarizada. La aplicación solicita unos parámetros de entrada al usuario. Una vez procesados los datos y obtenidos los resultados, éstos se envían por correo electrónico al usuario. Los resultados se obtienen para cada una de las causas de estudio (enfermedades, etnias, zonas geográficas...) y cada uno de los sexos introducidos en el fichero base.

Palabras clave: Aplicación web. Tasa. Porcentaje de cambio anual. Casos esperados. Predicciones. Razón de incidencia estandarizada. Razón de mortalidad estandarizada.


ABSTRACT

We propose a web-based tool (SART: http://regstattools.net/sart.html) that automates calculations to obtain various population indicators that can be used for the control of diseases or health events. SART has four modules: a) a descriptive module that allows calculation of the number of cases and their percentage, the crude rate, the adjusted rate, the truncated rate and the cumulative rate; b) the estimated annual percentage change of rates; c) calculation of expected cases; and d) the standardized incidence of mortality ratio. SART requests a base file and input parameters from the user before processing the data. The data and the results obtained are processed and then sent by email to the user. The results are provided by sex and for each of the study variables (diseases, ethnic groups, geographic areas...) introduced into the base file.

Key words: Web application. Rate. Annual percent change. Expected cases. Predictions. Standardized incidence ratio. Standardized mortality ratio.


 

Introducción

Los programas para la prevención y el control de enfermedades necesitan indicadores poblacionales que aseguren una adecuada medición de los eventos producidos, su monitorización en el tiempo y su comparación con otras áreas. Se dispone de pocas aplicaciones que realicen cálculos estadísticos sin requerir una instalación local y conocimientos avanzados en programación y estadística. En la tabla 1 se presentan aplicaciones que realizan cálculos de indicadores poblacionales1-4, y sus ventajas y desventajas respecto a SART (Statistical Analysis of Rates and Trends: http://regstattools.net/sart.html).

El Plan Director de Oncología de Cataluña, después de su experiencia en el desarrollo de las aplicaciones estadísticas vía web (http://regstattools.net/) para los análisis de supervivencia relativa (WAERS)5, y del efecto del riesgo y de los factores demográficos en la evolución de las tasas (RiskDiff)6, ha diseñado la aplicación SART, que automatiza el cálculo y la representación gráfica de los indicadores poblacionales: a) número de casos, porcentajes y tasas; b) porcentaje de cambio anual estimado (EAPC); c) casos esperados de un evento en un periodo de tiempo o área geográfica, y d) razón de incidencia o mortalidad estandarizada (SIMR).

 

Método

La aplicación SART está compuesta por cuatro módulos: Descriptive, EAPC, Expected cases y SIMR.

En el módulo Descriptive, para cada causa de estudio y sexo se calcula el número de casos, el porcentaje y las tasas cruda, ajustada según el método directo de estandarización, truncada y acumulada7. Para el cálculo de las tasas ajustadas y truncadas se utilizan los pesos de una población de referencia que proporciona el usuario (p. ej., la estándar mundial).

El módulo EAPC permite obtener el porcentaje de cambio anual para las tasas ajustadas y su respectivo intervalo de confianza (IC) mediante un modelo lineal generalizado7,8.

En el módulo Expected cases se calculan los valores esperados para cada una de las causas de estudio, año, grupo de edad y sexo. Se ajustan los modelos log-lineales age-drift9 y age-specific-slope10 para cada una de las causas de estudio y sexo, asumiendo una distribución de Poisson o binomial negativa para el número de casos observados9. Se utiliza el criterio de información de Akaike (AIC) y la bondad de ajuste (mediante el test de ji al cuadrado) para la elección del mejor modelo8.

En el módulo SIMR se calculan las razones de mortalidad (incidencia) estandarizada y sus respectivos IC mediante la metodología descrita por Breslow y Day11, calculando la razón entre el número de casos observados en la población en estudio y el número esperado según una población de referencia.

Formato de los ficheros

El usuario envía los ficheros de datos y parámetros necesarios para los análisis a la aplicación SART y recibe los resultados por correo electrónico. La aplicación SART se ha desarrollado con los lenguajes de programación R12, PHP: Hypertext Preprocessor (PHP)13 e Hypertext Markup Language (HTML).

El fichero base de datos debe contener seis variables: a) sex (1: hombre; 2: mujer; 0: ambos sexos); b) age.group (identificador numérico para cada grupo de edad); c) year (año/s de referencia si corresponde a un periodo); d) group (etiqueta descriptiva de los eventos); e) cases (número de casos de cada evento); y f) population (poblaciones a riesgo). El usuario también deberá crear ficheros específicos según el módulo utilizado:

1. Descriptive: a) fichero de los grupos de edad (identificador del grupo de edad del fichero base, sus límites inferior y superior); b) fichero de pesos de la población estándar (identificador del grupo de edad del fichero base y respectivo peso).

2. EAPC: fichero de pesos de la población (definido en el punto 1).

3. Expected cases: fichero con la población para la cual se estimarán los casos: sex (1: hombre; 2: mujer; 0: ambos sexos), age.group (identificador numérico del grupo de edad), year (año/s de referencia si corresponde a un periodo) y population (población a riesgo).

4. SIMR: fichero que define la población de referencia con la cual quiera compararse (mismo formato que el fichero base).

Parámetros de cada módulo

1. Descriptive: periodo de estudio, grupos de edad para truncar y acumular, eventos incluidos para el cálculo de los porcentajes e indicador oportuno para la representación gráfica.

2. EAPC: periodo de estudio y nivel de confianza (habitualmente 0,95).

3. SIMR: nivel de confianza (habitualmente 0,95).

Limitaciones

SART no calcula el IC para las tasas de incidencia (mortalidad) ni para los casos esperados. Asimismo, en el módulo Expected cases no pueden introducirse los años del fichero de entrada por los que se quieren ajustar los datos ni el nivel de confianza para el test de ji al cuadrado.

En comparación con otras herramientas, SART no tiene implementados los años potenciales de vida perdidos, las razones de tasas, las figuras de incidencia comparativa ni la prevalencia.

 

Aplicación práctica

SART incluye un tutorial y un conjunto de datos utilizado en el ejemplo de aplicación de este artículo. Se presenta la tendencia, en los hombres, de la mortalidad por cáncer en Cataluña en el periodo 1995-2004 (fig. 1), la comparación de la mortalidad por cáncer entre los periodos 2000-2004 y 1995-1999 (fig. 2) y la estimación de las defunciones esperadas por cáncer para ambos sexos en el periodo 2010-2015 (fig. 3). Los IC se calculan al 95% y en el análisis se han definido 18 grupos de edad quinquenales (1: 0-4 años; 2: 5-9 años [...]; 18: >85 años).

La figura 1 muestra los EAPC de la mortalidad por cáncer en Cataluña según la localización tumoral. En la mortalidad global por cáncer en los hombres en el periodo 1995-2004 (Total) se constata una disminución anual del 0,67%, estadísticamente significativa (EAPC: -0,67; IC: -1,20 a -0,14).

La figura 2 muestra los resultados de la comparación de la mortalidad por cáncer en los hombres en el periodo 2000-2004 respecto a 1995-1999 (SIMR). La mortalidad observada por cáncer en el periodo 2000-2004 en los hombres fue un 3% menor respecto a la esperada en 1995-1997 (SIMR: 0,97; IC: 0,96 a 0,98).

La figura 3 incluye una tabla y un fichero con los resultados correspondientes a las defunciones esperadas por cáncer en Cataluña en el periodo 2010-2015. En la tabla se detallan los modelos seleccionados para el cálculo del número de casos esperados según la localización tumoral y el sexo, siendo mayoritariamente el modelo seleccionado el age-drift con la distribución de Poisson. Todos los modelos se seleccionaron mediante el criterio del mínimo valor del AIC. El fichero muestra las defunciones esperadas (cases) por cáncer en Cataluña según el sexo, el grupo de edad, el año de estimación y la localización tumoral. En Cataluña, para el año 2015 se estiman 1113 defunciones por cáncer en los hombres entre 60 y 64 años de edad (grupo 13).

 

Conclusiones

SART es una herramienta estadística destinada al cálculo automatizado de indicadores poblacionales necesarios para cualquier profesional de las ciencias de la salud o sociales. A diferencia de otras herramientas estadísticas1-4, SART engloba el cálculo de todos los indicadores en una misma aplicación, no requiere instalación local y es de uso sencillo, rápido y de fácil interpretación.

Una nueva versión incorporará los IC para las tasas crudas y ajustadas del módulo Descriptive. En el módulo Expected cases quiere ofrecerse la posibilidad de calcular su IC y seleccionar el periodo en que se desean ajustar los datos y el nivel de confianza para el test de ji al cuadrado.

 

Contribuciones de autoría

J. Ribes concibió el estudio y junto con R. Clèries, K. Langohr y L. Esteban supervisaron todos los aspectos de su realización. L. Esteban programó la aplicación y realizó los análisis. J. Gálvez desarrolló la interfaz web. L. Esteban contribuyó a la redacción del primer borrador del manuscrito. L. Pareja trató los datos de la aplicación práctica. J.M. Escribà contribuyó a la revisión de la aplicación y a la redacción del artículo. Todos los autores aportaron ideas, interpretaron los hallazgos de la aplicación práctica y revisaron los borradores del manuscrito. Todos los autores aprobaron la versión final. L. Esteban es la responsable del artículo.

 

Financiación

Ninguna.

 

Conflictos de intereses

Ninguno.

 

Agradecimientos

Este trabajo se enmarca dentro de la Red de Investigación Cooperativa de Cáncer (RTICC) del Instituto de Salud Carlos III y de la SGR 1541 Registre de Càncer de Catalunya-Grup de recerca emergent. Queremos expresar también nuestro agradecimiento a Josep Maria Borràs, responsable del Pla Director d'Oncología de Catalunya, y a Rosa Gispert, responsable del Servei d'Informació i Estudis de Catalunya. Los autores quieren agradecer los comentarios y sugerencias realizados por tres revisores anónimos, que han mejorado significativamente el artículo.

 

Bibliografía

1. Engholm G, Ferlay J, Christensen N, et al. NORDCAN: Cancer Incidence, Mortality, Prevalence and Prediction in the Nordic Countries, Version 2.4. [Actualizado 26/10/2010.] Disponible en: http://www.ancr.nu/nordcan.asp.         [ Links ]

2. Instituto Superiore di Sanità. Centro Nazionale di Epidemiologia. Sorveglianza e Promozione della Salute. Roma. MIAMOD. Mortality, incidence analysis model. [Actualizado 2011]. Disponible en: http://www.eurocare.it/MiamodPiamod/tabid/60/Default.aspx#software.         [ Links ]

3. Surveillance Epidemiology and End Results. National Cancer Institute. SEER*Stat Software. Version 6.6.2. [Actualizado 13/4/2010.] Disponible en: http://www.seer.cancer.gov/seerstat/.         [ Links ]

4. On L, Semenciw RM, Mao Y. Orius software: calculation of rates and epidemiologic indicators, and preparation of graphical output. Chronic Dis Can. 2000; 21:134-6.         [ Links ]

5. Cleries R, Ribes J, Galvez J, et al. Cálculo automatizado de la supervivencia relativa vía web. El proyecto WAERS del Instituto Catalán de Oncología. Gac Sanit. 2005; 19:71-5.         [ Links ]

6. Valls J, Cleries R, Gálvez J, et al. RiskDiff: a web tool for the analysis of the difference due to risk and demographic factors for incidence or mortality data. BMC Public Health. 2009; 9:473.         [ Links ]

7. Esteve J, Benhamou E, Raymond L. Statistical methods in cancer research. Vol. IV. Descriptive epidemiology. Lyon: IARC Scientific Publications; 1994. p. 302.         [ Links ]

8. McCullagh P, Nelder J. Generalized linear models. Chapman & Hall/CRC; 1989. p. 511.         [ Links ]

9. Dyba T, Hakulinen T, Paivarinta L. A simple non-linear model in incidence prediction. Stat Med. 1997; 16:2297-309.         [ Links ]

10. Dyba T, Hakulinen T. Comparison of different approaches to incidence prediction based on simple interpolation techniques. Stat Med. 2000; 19:1741-52.         [ Links ]

11. Breslow NE, Day NE. Statistical methods in cancer research. Vol. II. The design and analysis of cohort studies. IARC Sci Publ. 1987; 82:1-406.         [ Links ]

12. R Development Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria, 2010. [Consultado 18/2/2011]. Disponible en: www.r-project.org.         [ Links ]

13. Davis ME, Phillips JA. Learning PHP and MySQL. O'Reilly; 2007. p. 411.         [ Links ]

 

 

Dirección para correspondencia:
Correo electrónico: j.ribes@iconcologia.net
(J. Ribes)

Recibido el 23 de diciembre de 2010
Aceptado el 4 de abril de 2011