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Abstract
Background. Tumour cells utilize different migration strategies to invade surrounding 
tissues and elude anticancer treatments. It is therefore important to understand the 
mechanisms underlying migration process, in order to aid the development of therapies 
aimed at blocking the dissemination of cancer cells. 
Aims. In this study tumour cell lines of different histological origin were analysed by 
combining 2D and 3D in vitro assays, biochemical tests and high resolution imaging by 
scanning electron microscopy (SEM) in order to look insight strategies adopted by tu-
mour cells to invade extracellular matrix. 
Results. Quantitative (computer-assisted colour camera equipped-light microscopy) 
and qualitative analysis (SEM) indicated that the most aggressive tumour cells adopt 
an “individual” behaviour. The analysis of intracellular signalling demonstrated that the 
highest invasive potential was associated with the activation of AKT, ERK, FAK and 
ERM proteins. The “individual” behaviour was positively related to the expression of 
VLA-2 and inversely related with the E-cadherin expression.

Conclusions. The combination of 2D and 3D in vitro assays, biochemical tests and 
ultrastructural investigations proved to be a suitable test for the investigation of tumour 
cell migration and invasion. The high resolution imaging by SEM highlighted the inter-
relationships between cells in different migratory behaviours of tumour cells.

INTRODUCTION

Metastasis is the most frequent cause of death for pa-
tients with cancer. The ability of a malignant tumour to 
become metastatic begins with the hallmarks of motility 
and invasiveness [1]. Cell movement (migration) is con-
trolled by internal and external signals, which activate 
complex signal transduction cascades resulting in highly 
dynamic and localised remodelling of the cytoskeleton, 
cell-cell and cell-substrate interactions [2]. 

Cancer cells exhibit various types of migration, such 
as “mesenchymal” or “amoeboid” migration and indi-
vidual or collective migration [3, 4]. In particular, de-
pending on the cell type and tissue environment, cells 
migrate individually, when cell-cell junctions are absent, 
or collectively as multicellular groups, when cell-cell ad-
hesions are retained [5-8]. The process that underlies 
both types of migration is the remodelling of the cell 
cytoskeleton that couples with cell surface receptors in-
teracting with surrounding tissue structures; thus, the 
cytoskeleton serves as the motor that drives the cell, 
and the cell surface receptors act as its transmission [9].

Moreover, mesenchymal migration requires extracel-
lular matrix (ECM) proteolysis through production of 

matrix metalloproteinases (MMPs). Conversely, amoe-
boid motility is characterised by squeezing movements 
that allow cancer cells to move through the matrix with-
out the use of MMPs and integrin engagement [5].

By shifting between different migration strategies, 
migrating cells can adapt to environmental changes 
and matrix stiffness to elude anticancer treatments. 
It is therefore important to understand the molecular 
mechanisms underlying migration process, which is the 
pernicious step in most solid tumour diseases, in order 
to develop strategies aimed at blocking the dissemina-
tion of cancer cells [5, 10, 11]. 

A lot of methods have been invented to investigate 
tumour cell migration, but not all are equally suited and 
no method alone is able to deliver a complete picture 
of tumour cell migration. Most studies on cell motility 
have been performed in two-dimensional (2D) culture 
systems, which limits our understanding of mechanisms 
of cell migration, as cells use different cell migration 
strategies in physiological three-dimensional (3D) cul-
ture systems [12, 13]. 

One of the earliest 2D culture systems employed to 
investigate cell migration is the “monolayer wound-
healing” assay. In this method cancer cells are seeded 
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on a substrate and cultured until they form a confluent 
monolayer. Thereafter a scratch is made in the mono-
layer, and the time required for cells to fill the voided 
gap is measured. In the microliter-scale migration as-
says, selected molecules are deposited on a substrate 
(e.g. 10-well Teflon printed microscopic slides), the 
cell-containing solution is placed at the centre of these 
wells and the radial migration of cells is then monitored 
[14]. The “Boyden chamber” assay (another 2D assay) 
examines migration of cells through a porous insert 
(Transwell™) in response to specific attractant. Cells 
are seeded on the top of the insert and the cells cross-
ing through the membrane pores are analysed [15]. 
However, in vivo tumour cells must attach and degrade 
a basement membrane matrix in order to metastasize. 
The migration of cells from one tissue compartment to 
another is closely associated with extracellular matrix 
(ECM) remodelling and represents a fundamental step 
both in physiological and pathological cell movement. 
More than 25 years ago a 3D in vitro invasion assay was 
developed by using Matrigel™ as a ECM model in a 
modified two well Boyden migration chamber. This as-
say is in wide use today and has been very important for 
the study of cell migration and invasion [16, 17].

We herein suggest a combination of methods for the 
investigation of tumour cell migration and invasion. 
This combination comprises 2D (Boyden chamber as-
say) and 3D (Modified Boyden chamber assay) in vitro 
assays, biochemical tests and ultrastructural investi-
gations by scanning electron microscopy (SEM). The 
analysis performed by SEM allowed us to visualize at 
high resolution the behaviour adopted by tumour cells 
to migrate and invade the ECM model. Cell behaviours 
(collective/individual, amoeboid/mesenchymal) were 
compared with the aggressiveness of tumour cells (mi-
gration and invasion potential), and with the signalling 
pathways involved.

MATERIALS AND METHODS
Cells cultures

Established tumour cell lines from different histologi-
cal origin were used: murine (C6) and human (LN229) 
glioblastoma, human melanoma (M14 WT and M14 
ADR), human colon adenocarcinoma (LoVo WT and 
LoVo ADR), and human breast cancer (MDA-MB-231, 
MCF-7 WT and MCF-7 ADR) cells. 

C6, LN229, MDA, MCF-7 WT and MCF-7 ADR 
cells were grown in DMEM with high glucose; M14 WT 
and M14 ADR cells were grown in RPMI 1640; LoVo 
WT and LoVo ADR cells were grown in Ham’s nutrient 
mixture (F-12). The media were supplemented with 1% 
non essential amino acids, 1% L-glutamine, 100 IU/ml 
penicillin, 100 IU/ml streptomycin, 10% fetal calf se-
rum (Flow Laboratories) and 1% vitamins (F-12). Cell 
lines were cultured at 37 °C in a 5% CO2 humidified 
atmosphere in air. 

Invasion and motility assays
To analyse the migration and invasion potential of tu-

mour cells, 2D (Boyden chamber assay) and 3D (Modi-
fied Boyden chamber assay) assays were employed. 
Briefly, inserts (8.0 mm pore) (Falcon) which stood in 

6-well plates (Costar) were used. For 3D assay Matri-
gel™ was placed on the lower side of each insert. Cells 
were incubated at 37 °C up to 24 h. After this time, the 
inner side of the insert was wiped with a wet swab to 
remove the cells while the outer side of the insert was 
gently rinsed with PBS. For quantitative analysis inserts 
were stained with 0.25% crystal violet for 10 min, rinsed 
again and then allowed to dry. The detection of cells 
that passed through the membrane pores (migration) 
and invaded Matrigel™ (invasion) was obtained by a 
computer-assisted colour camera equipped Nikon Op-
tiphot microscope and the percentage of area occupied 
by migrated cells was analysed by dedicated software 
(Optilab Graftek). The image processing techniques 
employed included thresholding and morphological 
filtering. For qualitative analysis (ultrastructural obser-
vations by SEM) inserts were processed as below de-
scribed.

Scanning electron microscopy
For SEM studies, inserts were fixed with 2.5% glutar-

aldehyde in 0.1 M cacodylate buffer (pH 7.3), added 
with 2% sucrose. After post-fixation with 1% OsO4 in 
0.1 M cacodylate buffer (pH 7.3), cells were dehy-
drated through graded ethanol concentrations, critical 
point-dried in CO2 (CPD 030 Balzers device, Bal-Tec, 
Balzers) and gold coated by sputtering (SCD 040 Balz-
ers device, Bal-Tec). The samples were then examined 
with a Cambridge Stereoscan 360 scanning electron 
microscope (Cambridge Instruments, Cambridge, 
United Kingdom). 

Western blotting
The analysis of MAPK phosphorylation was per-

formed in tumour cells under migration assay. After 
24h cells were harvested from the insert, washed twice 
in ice-cold Tris-buffered saline (TBS; 20 mM Tris–HCl, 
pH 7.6, 140 mM NaCl), and lysed at 4 °C in 200 ml 
lysis buffer (10 mM Tris–HCl, pH 7.6, 50 mM NaCl, 
30 mM sodium pyrophosphate, 5 mM EDTA, 0.5% 
Nonidet P40, 1% Triton X-100, 50 mM NaF, 0.1 mM 
Na3VO4, 1 mM phenylmethylsulfonyl fluoride, and 
complete mini proteinase inhibitors). Cell lysates were 
obtained by centrifugation at 17 000 g for 30 minutes at 
4 °C; protein concentration in the supernatant was de-
termined by DC Protein Assay (Bio-Rad Laboratories), 
and lysates were adjusted to equivalent concentrations 
with lysis buffer. Total cell lysate (10-40 mg) was then 
separated on SDS-PAGE. Proteins were transferred to 
polyvinylidene difluoride membranes that were blocked 
with 5% BSA in TTBS, for 1 hour at room temperature. 
Incubations with primary antibodies and with horserad-
ish peroxidase-conjugated secondary antibodies were 
performed in blocking solution overnight at 4 °C and 
for 1 hour at room temperature, respectively. Immuno-
reactive bands were visualised by the ECL kit. For load-
ing control, membranes were incubated with monoclo-
nal anti-alpha-tubulin.

Flow cytometry
For flow cytometry analysis of the surface adhesion 

molecules (E-Cadherin, VLA2, VLA5, CD44) cells 



Tumour cell migration and invasion

O
r

ig
in

a
l
 a

r
t

ic
l

e
s
 a

n
d

 r
e

v
ie

w
s

141

were detached and incubated in phosphate buffered 
saline (PBS) containing 0.5% bovine serum albumin 
(BSA). Then, cells were incubated for 30 minutes at 4 
°C with specific monoclonal antibody directed against 
surface antigens. After incubating, the mixtures were 
centrifuged twice using cold PBS solution containing 
0.5% BSA and incubated with fluorescein isothiocya-
nate (FITC)-conjugated secondary antibodies for 30 
minutes at 4 °C. Finally, cells washed twice using PBS 
containing 0.5% BSA were immediately analysed. Prop-
idium iodide (PI) was used to recognize dead cells. 
Negative controls were obtained by incubating cells 
with isotypic primary antibodies, and then with FITC-
conjugated secondary antibodies.

Samples were analysed with a FACScan flow cytom-
eter (Becton Dickinson, CA) equipped with a 15 mV 
argon ion laser, 488 nm. The fluorescence signal of fluo-
rescein (FITC) was collected with a 530 nm band-pass 
filter while propidium iodide signal with a band-pass 
filter 575 nm. 

RESULTS AND DISCUSSION
Study of the migration and invasion potential 

In this study several tumour cell lines of different 
histotypes were employed. In particular, three human 
breast carcinoma cell lines (MDA-MB-231, MCF-7 
WT and their resistant variants MCF-7 ADR), two 
glioblastoma cell lines (LN229, human; C6, murine), 
two human melanoma cell lines (M14 WT and their re-
sistant variants M14 ADR), and two human colon ad-
enocarcinoma cell lines (LoVo WT and their resistant 
variants LoVo ADR) were employed. Drug-resistant 
variants overexpress the multidrug transmembrane P-
glycoprotein, capable of transporting structurally and 
functionally not related xenobiotics, thus responsible 
for the pleiotropic resistance of tumour cells [18]. The 
migration and invasion potential of the tumour cell 
lines were analysed by the in vitro 2D (Boyden cham-
ber assay) and 3D (modified Boyden chamber assay) 
assays, respectively. These assays can provide a rapid 
quantification of the invasive and metastatic potential 
of cell lines, corresponding to that determined by in 
vivo tests on the same experimental models [15, 19]. In 
the migration assay cells were placed on a membrane 
with 8 µm pores and subjected to a chemotactic stimu-
lus (10% FCS) for 20 hours. For the invasion assay a 
MatrigelTM film was deposited on the lower side of the 
porous membranes. The percentage of area occupied 
by cells, migrated through the membrane pores in the 
absence (migration) or in the presence (invasion) of 
MatrigelTM film, was then evaluated (Supplementary 
data 1 and 2 available online at www.iss.it/anna). 

In our experimental conditions different migratory 
and invasive potentials were found and the percentage 
of area occupied by the tested tumour cell lines that 
have been listed in a descending order in Table 1.

Human breast cancer MDA-MB-231 cells displayed 
the highest capacity of migrating, as showed by the 
percentage of occupied area on the lower side of the 
porous membrane (50.0%). This value appeared to 
be exceptionally high when compared with both the 
breast carcinoma cell lines MCF-7 WT and MCF-7 

ADR cells and the other tumour cells of different his-
totypes. However, MCF-7 ADR cells showed to be 
faster (2.8%) than their sensitive counterparts MCF-7 
WT cells (1.2%). Also in the presence of MatrigelTM 
MDA-MB-231 cells displayed the highest potential of 
invasion (58.0%) in comparison with the other tumour 
cells. Differently from their sensitive counterparts, 
MCF-7 ADR resistant variants appeared to be stimu-
lated by the MatrigelTM as showed by the duplicated 
percentage of area occupied (4.2%). As elsewhere re-
ported, the proteins of the extracellular matrix through 
the binding with adhesion molecules expressed by the 
plasma membrane trigger molecular mechanisms un-
derlying actin assembly and invadopodia formation 
[20]. 

Glioblastoma and melanoma cells followed in the list 
order MDA-MB 231 cells. Murine C6 cells showed a 
migratory (22.0%) and invasive (29.2%) potential high-
er than human LN229 cells (15.0% and 26.7%, respec-
tively). Drug resistant human melanoma cells (M14 
ADR) proved to be more efficient than drug-sensitive 
M14 WT cells in both migration (17.8% vs 11.3%) and 
invasion assays (22.7% vs 10.9%). Invasion assay high-
lighted that the overexpression of the drug-transporter 
P-glycoprotein conferred a higher migration and inva-
sion potential of human melanoma and human cancer 
breast cells. M14 ADR and MCF-7 ADR cells, in fact, 
displayed a higher capability of invading the MatrigelTM 
when compared to their drug sensitive counterparts. 
The overexpression of P-glycoprotein seems to be di-
rectly involved in increasing cell motility, and confers to 
tumour cells a more aggressive phenotype through the 
phosphorylation ERM proteins and MAPK signalling 
(ERK 1/2 and p38/ MAPK) [21, 22]. It is interesting 
to note that under migratory stimulus phosphorylation 
of ERM proteins was found in both M14 ADR cells, 
but not in MCF7-ADR and LoVo ADR cells (data not 
shown). Accordingly, the difference WT vs ADR ap-
peared to be less significant in human colon adenocar-
cinoma cells both in migration (1.7% vs 2%) and inva-
sion assays (3.7% vs 3.3%). 

Table 1
Percentage of area occupied by cells migrated on the lower 
side of the filter in the absence (migration) and in the presence 
(invasion) of Matrigel™

Migration (%) Invasion (%)

MDA 50.0 MDA 58.0

C6 22.0 C6 29.2

M14 ADR 17.8 LN229 26.7

LN229 15.0 M14 ADR 22.7

M14 WT 11.3 M14 WT 10.9

MCF-7 ADR   2.8 MCF-7 ADR  4.2

LoVo ADR       2.0 LoVo ADR     3.7

LoVo WT      1.7 LoVo WT       3.3

MCF-7 WT    1.2 MCF-7 WT    0
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Study of the migratory and invasive behaviour by 
SEM

The study of migratory and invasive behaviour adopt-
ed by the various tumour cells was analysed by SEM. 
3D imaging offered by SEM can provide evidence of 
“individual” or “collective” behaviour adopted by tu-
mour cells to migrate through membranes or to invade 
Matrigel™. Cells that adopt an “individual” behaviour 
detach from the cell population and pass through the 
pores separately. In a “collective” behaviour cells move 

in clusters closely linked each other. In these groups of 
cells it can be identified a leader, called by some au-
thors “Guerilla cell” [23]. These leader cells generate 
the traction force necessary for the migration of the 
group through the activity of pseudopodia, pulling be-
hind resting cells.

Among human breast carcinoma MDA-MB-231, 
MCF-7 WT and MCF-7 ADR cells different migratory 
behaviours were identified (Figure 1 a-f). The greatest 
migration potential of this tumour appeared to be as-
sociated with an individual behaviour. In fact, MCF-7 
WT cells less active in the migration assay tended to 
form large clusters on the upper side of the porous 
membrane (Figure 1 a). MCF-7 ADR cells displayed an 
increase of migratory potential when compared to the 
parental cells and showed a “mixed” behaviour. In fact, 
they appeared to be organized in small groups of two or 
three cells overcrowding the same membrane pore dur-
ing migration (Figure 1 c). MDA-MB-231 cells, which 
in the quantitative analysis occupied the highest per-
centage of filter area (50%), adopted a distinct “individ-
ual” behaviour. Indeed, they were not arranged in clus-
ters but moved separately towards the lower side of the 
membrane (Figure 1 e). SEM observations performed 
on the lower side of porous membranes, confirmed 
data obtained by the quantitative analysis carried out 
by image analysis. In fact, in MCF-7 WT cell samples, 
a small number of migrated cells was observed on the 
lower side of the filter (Figure 1 b). Accordingly, the 
number of migrated cells increased in MCF-7 ADR cell 
samples (Figure 1 d), whereas migrated MDA-MB-231 
cells covered almost the whole area of the lower side of 
the filter (Figure 1 f). 

Figure 1
Scanning electron microscopy observations performed on the 
upper side (a, c, e, g, i, k, m) and on the lower side (b, d, f, h, j, l, 
n) of the filter during the migration process.  The observations 
performed on the upper side provide evidence that MCF-7 
WT (a), LN229 (g) and LoVo ADR (m) cells adopted a “collec-
tive” behaviour, whereas MDA-MB-231(e), C6 (i) and LoVo WT 
(k) cells adopted a “individual” behaviour. MCF-7 ADR (c) cells 
showed a “mixed” behaviour. Cells that adopt an individual 
behaviour tend to separate from the rest of the cell popula-
tion and to pass through the pores individually. In the “collec-
tive” behaviour clusters of cells move closely linked each other. 
In these groups of cells it can be identified a leader (arrows) 
dragging the other cells. These leader cells generate the trac-
tion force necessary for the migration of the group, through 
the activity of pseudopodia, pulling behind resting cells. Ob-
servations performed on the lower side of porous membranes, 
confirmed data obtained by the quantitative analysis. MCF-7 
WT cells samples (b) showed the smallest number of migrated 
cells on the lower side of the filter. In MCF-7 ADR cell samples 
(d) the number of migrated cells increased, while migrated 
MDA-MB-231 cells covered almost the whole area of the lower 
side of the filter (f). In C6 cell sample (j) numerous cells com-
pleted the migration process, in contrast with LN229 cells that 
moved more slowly (h). Finally, LoVo WT samples (l) displayed 
a number of cells lower than their resistant counterpart LoVo 
ADR cells (n).
Enlarged version of the figure 1 is available in Supplementary 
data 3 at www.iss.it/anna
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Even the glioblastoma cell lines showed differences 
in migratory behaviour and also in the case the great-
est migratory potential appeared to be associated with 
an individual behaviour. Human glioblastoma LN229 
cells organized in clusters whence some cells spread 
out and tried to pass through pores, meanwhile other 
cells, rounded in shape, took advance of leading migra-
tory forces, without actively participating in the process 
(Figure 1 g). The murine glioblastoma C6 cells migrated 
individually: on the top of the membrane all cells ap-
peared to be equally stretched, trying to actively pass 

through the pores (Figure 1 i). In the lower side of the 
filter, numerous C6 cells showed to have completed the 
migration process and covered completely the substrate 
(Figure 1 j). Accordingly with quantitative data, human 
LN229 cells moved more slowly and a number of them 
were rich in blebs (Figure 1 h), morphological markers 
suggestive of an active reorganization of the actin cyto-
skeleton [24].

SEM observations on human colon adenocarcinoma 
LoVo WT and LoVo ADR cells substantially confirmed 
the quantitative analysis. Human adenocarcinoma cells 
migrated with difficulty through the filter. On the upper 
side, cells passed through the pores alone or linked each 
other in small groups (Figures 1 k and m). On the lower 
side of the filter very few if not at all LoVo cells were 
observed (Figure 1 l and n). 

The experiments of invasion were carried out in the 
presence of a MatrigelTM film gelified on the lower side 
of the membrane. In literature data two types of be-
haviour adopted by cancer cells to invade the extra-
cellular matrix are described: the “mesenchymal” and 
the “ameboid” type, depending on the presence or the 
absence of focused proteolysis, respectively [5]. SEM 
observations performed on the upper side of the porous 
membrane confirmed the strong tendency of MCF-7 
WT cells to organize in clusters within which it was dif-
ficult to distinguish individual cells (Figure 2 a). On the 
contrary, the resistant cells tended to migrate alone or 
organized in small groups of two or three cells trying to 
pass through the same pore (Figure 2 c). Both MCF-7 
WT and MCF-7 ADR cells seemed to adopt a “mesen-
chymal” behaviour with matrix proteolysis as suggested 
by the structure of MatrigelTM film which appeared thin 

Figure 2
Scanning electron microscopy observations performed on the 
upper side (a, c, e, g, i, k, m) and on the lower side (b, d, f, h, 
j, l, n) of the filter during the invasion process in presence of 
Matrigel™. The observations performed on the upper side pro-
vide evidence of “individual” or “collective” behaviour adopted 
by tumour cells. In the presence of a film of MatrigelTM, MCF-7 
WT (a), LoVo WT (k) and LoVo ADR (m) cells adopted a “collec-
tive” behaviour, whereas MDA-MB-231 (e), LN229 (g), and C6 
(i) cells adopted an “individual” behaviour. MCF-7 ADR (c) cells 
showed a “mixed” behaviour. The observations on the lower 
side provide information on the type of tumour cell-extracellu-
lar matrix interactions during the invasion process. MCF-7 WT 
(b), MCF-7 ADR (d), MDA-MB-231 (f) cells adopted a “mesen-
chymal” behaviour whereas, C6) (j), LoVo WT (l) and LoVo ADR 
(n) adopted an “amoeboid-like” behaviour. Cells that adopt a 
“mesenchymal” behaviour showed an intense proteolytic ac-
tivity focused around invadopodia. Focused proteolysis was 
due to proteases strongly concentrated near the binding sites 
between integrins and extracellular matrix. Cells that adopt an 
“amoeboid” behaviour penetrated the fibers of MatrigelTM with-
out degrading it, but infiltrating and invading the extracellular 
matrix. However, there are cells that show a “mixed” behaviour 
(LN229, h): while in some areas matrix degradation was ob-
served, suggesting that cells recurred to an invasion of mes-
enchymal type, in other areas cells appear to infiltrate through 
the mesh of the matrix in “ameboid-like” manner. 
Enlarged version of the figure 2 is available in Supplementary 
data 4 at www.iss.it/anna 
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and loose (Figure 2 b and d, respectively). However, in 
agreement with the data obtained by quantitative anal-
ysis MCF-7 WT cells showed a scarce ability to invade 
the MatrigelTM and only the ends of invadopodia peek-
ing out from the pores were visible (Figure 2 b). By the 
contrast, MCF-7 ADR cells proved to be more able to 
invade the extracellular matrix and they appeared cov-
ered by film residues, surrounded by an area of prote-
olysis (Figure 2 b). Differently from MCF-7 cells, highly 
invasive breast cancer MDA-MB-231 cells showed an 
individual organization on the upper side of the filter 
(Figure 2 e). The observations performed on the lower 
side of the filter revealed large areas of matrix degrada-
tion, suggesting that also MDA-MB-231 cells recurred 
to an invasion of mesenchymal type (Figure 2 f). 

Human LN229 glioblastoma cells (Figure 2 g and h) 
where strongly stimulated by the presence of the ex-
tracellular matrix and changed the “collective” in “in-
dividual” behaviour in the invasion process, similar as 
murine C6 cells (Figures 2 i and j). Both human (Figure 
2 h) and murine cells (Figure 2 j) penetrated the fibers of 
MatrigelTM apparently without degrading it. In fact, the 
invadopodia seemed to infiltrate the extracellular ma-
trix principally by mechanical forces, as demonstrated 
by the numerous cracks crossing the compact film all 
around the invading cells. 

The presence of MatrigelTM also stimulated the migra-
tion and invasion processes of adenocarcinoma LoVo 
WT and LoVo ADR cells, even if in a lesser extent. Both 
the sensitive (Figure 2 k) and drug-resistant cells (Fig-
ure 2 m) adopted a “collective” behaviour and organized 
in small clusters and chains on the upper side of the 
membrane. Adenocarcinoma cells penetrated the fibers 
of MatrigelTM seemingly in the absence of matrix pro-
teolysis.

Intracellular signalling underlying migration 
Functional and ultrastructural observations were 

associated to the analysis of intracellular signalling 
triggered under migratory stimulus. The main aim of 
these experiments was to assess intracellular signalling 
engaged by tumour cells of different histotype during 
cell migration. The analysis was performed on samples 
obtained both from cells cultured in flask and cells un-
der migration in the invasion chambers. The kinases 
examined were p-ERK 1/2 (extracellular-regulated ki-
nase 1/2), p-PKB (protein kinase B, also named AKT), 
p-FAK (focal adhesion kinase), and p-ERM (ezrina, ra-
dixina, myosin). MAP kinases play an important role 
in various physiological processes such as cell prolif-
eration, differentiation, inflammation and response to 
stress [25]. Evidence showed that MAPKs are essential 
for cell migration and their role relates to the actin as-
sembling resulting in formation of cell protrusions on 
leading edge [26, 27], stress fibers structures, and mem-
bership that stimulate directional migration of the cells 
[28]. 

An increased expression of p-ERK was observed in 
most of the cell lines tested under migration stimulus, 
except for MCF-7ADR and LoVo WT cells (Figure 3 a). 
The MAPK ERK 1/2 is a kinase regulated by extracellu-
lar signals. Some growth factors and components of the 

matrix are able to activate ERK1/2 and several observa-
tions showed that it is directly involved in cell motility 
[29-31]. ERK activation can also modulate invasion and 
migration through several cellular pathways: influenc-
ing cell survival, gene transcription factor AP-1 or di-
rectly regulating the enzymes (MLCK) necessary for lo-
comotion [32]. p-FAK, is one of the substrates of ERK 
1/2 and its activation by phosphorylation can regulate 
focal contact dynamics. Accordingly with the activation 
of ERK, an increased activation of p-FAK was revealed 
in the cell lines most invasive MDA-MB-231, C6 and 
M14 ADR cells (Figure 3 a).

A similar study was performed on both cultured and 
stimulated cells to evaluate the AKT/PKB activation. 
Literature data showed the involvement AKT pathway, 
in cell proliferation and metastasis [33]. Arboleda and 
colleagues [34] demonstrated that breast cancer cells 
transfected with AKTβ cDNA displayed increased cel-
lular invasiveness in vivo and in vitro. There are three iso-
forms of PKB protein, the antibody used in this study 
recognizes and binds the β and γ isoforms. An increase 
of p-AKT expression was revealed in the most invasive 
MDA-MB-231, C6, M14 WT and M14 ADR cells (Fig-
ure 3 a).

By analysing the results in their complexity a posi-
tive correlation of protein kinases activation with the 
migration and invasion potential was established. Un-
der migratory stimulus, the largest number of activated 
molecular pathways was revealed in the most aggressive 
cell lines confirming the important role of these kinases 
in the invasive phenotype of tumour cells. 

Expression of adhesion molecules 
Flow cytometry analysis allowed us to evaluate the 

expression of adhesion molecules involved in the met-
astatic process such as E-cadherin, VLA2, VLA5 and 
CD44 [35-40] in the different tumour cell lines.

E-cadherin is an adhesion molecule belonging to 
the superfamily of cadherins. In epithelial tumors the 
progressive loss of E-cadherin expression is correlated 
with an increased aggressiveness [41]. The expression 
of this trasmembrane receptor, in fact, provides to both 
the stability of cell-cell junctions and the recruitment of  
b-catenin. However, gene coding for E-cadherin may 
undergone to promoter ipermetilation and switch off. 
This involves loss of cell-cell adhesions, thus promoting 
cell motility essential for the metastatic process. Also the 
b-catenin, no longer confined into the cytosol, migrates 
into the nucleus and activates genes involved in cell pro-
liferation, including c-myc and cyclin D1. The flow cy-
tometry analysis was performed only on human cell lines 
(Figure 3 b, Supplementary data 5 and 6 available on-
line at www.iss.it/anna) and showed low levels or loss of  
E-cadherin expression in the cell lines with the high-
est migratory and invasive potential, MDA-MB-231, 
LN229, M14 WT, and M14 ADR cells. On the other 
hand, the cell lines that displayed a low potential in 
migration and invasion assays, expressed high levels of 
E-cadherin: MCF-7 WT, MCF-7 ADR, LoVo WT and 
LoVo ADR cells. These results confirmed the relation-
ship between loss of expression of E-cadherin and tu-
mour aggressiveness widely reported in the literature 
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[35, 42] and validates migration and invasion assays 
used in this study. In fact, the loss of E-cadherin well 
correlates with the acquisition of the “individual” behav-
iour by aggressive cells analysed in the present study.

The acquisition of aggressive phenotype by tumour 
cells has been associated with the expression of both 
VLA5 and VLA2 integrins, and CD44 molecule. Lit-
erature data correlate the expression of these mol-
ecules with a more invasive and metastatic potential 
[40]. The results obtained showed that MDA-MB-231 
cells express the highest level of the tested proteins 
(Figure 3 b, Supplementary data 5 and 6 available on-
line at www.iss.it/anna). VLA2 and VLA5 belong to 
the superfamily of integrins. These two molecules are 
heterodimers consisting of α2β1 and α5β1 subunits re-
spectively. They mediate tumour cell interaction with 
the extracellular matrix [43]. Analysing the expression 
of VLA2 in the various tumour cell lines, we observed 
that MDA-MB-231 cells were characterized by the 
highest invasive potential and highest expression of 

this integrin among the cell lines tested. Also the other 
tumour cells expressed on their membrane VLA2 in-
tegrin but at a lower level then MDA-MB-231 cells. 
When the VLA5 expression was examined the human 
melanoma resistant M14 ADR cells, which belong to 
the more invasive cell lines, showed the highest level 
of protein expression. 

The CD44 adhesion molecule is a monomeric trans-
membrane protein that can bind to various components 
of the extracellular matrix, such as hyaluronic acid, lam-
inin, fibronectin and collagen. CD44 is expressed on 
various types of neoplastic cells and on their metastases 
[38, 39]. Among the cell lines tested the MDA-MB-231 
cells were those expressing the highest level of protein 
in the membrane. The CD44 was also the protein most 
expressed in the resistant human adenocarcinoma 
cells and human glioblastoma. It is interesting to note 
that the CD44 expression in drug resistant cell lines 
(MCF-7 ADR, LoVo ADR and M14 ADR cells) was 
higher than in the relative sensitive counterparts. The 
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Figure 3
(a) Western blotting analysis of MAP kinase (p-ERK 1/2, p-AKT, p-FAK) activation under the migratory stimulus*. Cells with highest 
migration and invasion potential generally displayed, under migratory stimulus, the highest number of activated molecular path-
ways. (b) Flow cytometry analysis of the adhesion molecule expression. The analysed molecules were E-cadherin, VLA2, VLA5 and 
CD44. Values in ordinate are expressed in arbitrary units and represents positive sample/negative control ratio.
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expression of CD44 well correlated with drug-resistant 
phenotype and the increased invasion potential can be 
explained by the active cooperation between CD44 
and P-glycoprotein previously demonstrated in human 
melanoma and breast carcinoma cells [21, 44]. Howev-
er, the highest expression of CD44 can account for the 
highest invasive potential of resistant melanoma cells 
where it is associated to both P-glycoprotein and ERM 
proteins [22]. These proteins under migratory stimulus 
are phosphorylated only in human resistant melanoma 
cells, but not in the resistant breast cancer and adeno-
carcinoma cells (data not shown). This could account 
for a low number of intracellular pathways activated by 
the interaction with the extracellular matrix.

CONCLUSIONS
Cancer invasion is a multi-step process determined 

by both molecular properties of the tumor cells and me-
chanical and signaling input from the tumor microen-
vironment. Defined by context, tumors develop either 
single-cell or collective invasion modes. In vivo tumour 
cells invade tissue either individually as single cells in 
elongated, mesenchymal or rounded, amoeboid-like 
behaviour after cell-cell junctions were abandoned. 
Alternatively, cancer cells retain cell-cell junctions and 
migrate collectively as cohesive multicellular units into 
the peritumoural stroma however, the mechanical and 
molecular programs underlying such plasticity of inva-
sion programs remain unclear [45, 46].

The combination of 2D and 3D in vitro assays, bio-
chemical tests and ultrastructural investigations by 
SEM proved to be particularly suitable for the investi-

gation of tumour cell migration and invasion. The high 
resolution imaging by SEM highlighted the interrela-
tionships between cells in different migratory behav-
iours of tumour cells. The results obtained by quanti-
tative (computer-assisted colour camera equipped-light 
microscopy) and qualitative analysis (scanning electron 
microscopy) indicated that the most aggressive tumour 
cells adopt an “individual” behaviour. The analysis of 
the intracellular signalling demonstrated that the high-
est invasive potential was associated with the activation 
of ERM, AKT, ERK, and FAK proteins. The “individ-
ual” behaviour was positively related to the expression 
of VLA-2 and inversely related with the E-cadherin ex-
pression. However, the results obtained in our experi-
mental conditions indicated that under the stimulus of 
ECM proteins, tumour cells can adopt a more advan-
tageous behaviour (collective vs individual) as showed 
by human glioblastoma cells. In addition, the results 
obtained in this study confirm that the acquisition of 
the multidrugresistant (MDR) phenotype increases the 
invasive potential of tumour cells by the involvement of 
MDR markers (P-glycoprotein) and ERM proteins in 
the MAPK intracellular signalling. 
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Supplementary data 1
Membranes of modified Boyden chamber assay stained with 
crystal violet. Left panels migration assay. Right panels inva-
sion assay.

Supplementary data 2
Membranes of modified Boyden chamber assay stained with 
crystal violet. Left panels migration assay. Right panels inva-
sion assay.
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Supplementary data 3
Scanning electron microscopy observations per-
formed on the upper side (a, c, e, g, i, k, m) and on 
the lower side (b, d, f, h, j, l, n) of the filter during the 
migration process.  The observations performed on 
the upper side provide evidence that MCF-7 WT (a), 
LN229 (g) and LoVo ADR (m) cells adopted a “col-
lective” behaviour, whereas MDA-MB-231(e), C6 (i) 
and LoVo WT (k) cells adopted a “individual” behav-
iour. MCF-7 ADR (c) cells showed a “mixed” behav-
iour. Cells that adopt an individual behaviour tend 
to separate from the rest of the cell population and 
to pass through the pores individually. In the “col-
lective” behaviour clusters of cells move closely 
linked each other. In these groups of cells it can 
be identified a leader (arrows) dragging the other 
cells. These leader cells generate the traction force 
necessary for the migration of the group, through 
the activity of pseudopodia, pulling behind resting 
cells. Observations performed on the lower side of 
porous membranes, confirmed data obtained by 
the quantitative analysis. MCF-7 WT cells samples 
(b) showed the smallest number of migrated cells 
on the lower side of the filter. In MCF-7 ADR cell 
samples (d) the number of migrated cells increased, 
while migrated MDA-MB-231 cells covered almost 
the whole area of the lower side of the filter (f). In 
C6 cell sample (j) numerous cells completed the 
migration process, in contrast with LN229 cells that 
moved more slowly (h). Finally, LoVo WT samples (l) 
displayed a number of cells lower than their resis-
tant counterpart LoVo ADR cells (n).



S
u

p
p

l
e

m
e

n
t

a
r

y
 M

a
t

e
r

ia
l

s
 

Supplementary data 4
Scanning electron microscopy observations per-
formed on the upper side (a, c, e, g, i, k, m) and on 
the lower side (b, d, f, h, j, l, n) of the filter during 
the invasion process in presence of Matrigel™. The 
observations performed on the upper side provide 
evidence of “individual” or “collective” behaviour 
adopted by tumour cells. In the presence of a film 
of MatrigelTM, MCF-7 WT (a), LoVo WT (k) and LoVo 
ADR (m) cells adopted a “collective” behaviour, 
whereas MDA-MB-231 (e), LN229 (g), and C6 (i) cells 
adopted an “individual” behaviour. MCF-7 ADR (c) 
cells showed a “mixed” behaviour. The observations 
on the lower side provide information on the type 
of tumour cell-extracellular matrix interactions 
during the invasion process. MCF-7 WT (b), MCF-7 
ADR (d), MDA-MB-231 (f) cells adopted a “mesen-
chymal” behaviour whereas, C6) (j), LoVo WT (l) and 
LoVo ADR (n) adopted an “amoeboid-like” behav-
iour. Cells that adopt a “mesenchymal” behaviour 
showed an intense proteolytic activity focused 
around invadopodia. Focused proteolysis was 
due to proteases strongly concentrated near the 
binding sites between integrins and extracellular 
matrix. Cells that adopt an “amoeboid” behaviour 
penetrated the fibers of MatrigelTM without degrad-
ing it, but infiltrating and invading the extracel-
lular matrix. However, there are cells that show a 
“mixed” behaviour (LN229, h): while in some areas 
matrix degradation was observed, suggesting that 
cells recurred to an invasion of mesenchymal type, 
in other areas cells appear to infiltrate through the 
mesh of the matrix in “ameboid-like” manner. 
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Supplementary data 5
Flow cytometry analysis of CD44, E-cadherin and VLA2 proteins on: (a) MCF7 WT, (b) MCF7 ADR, (c) M14 WT, (d) M14 ADR, (e) LoVo 
WT, (f ) LoVo ADR, (g) MDA-MB-231, (h) LN229 cells.
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Supplementary data 6
Flow cytometry analysis of VLA5 protein on: (a) MCF7 WT, (b) MCF7 ADR, (c) M14 WT, (d) M14 ADR, (e) LoVo WT, (f ) LoVo ADR, (g) 
MDA-MB-231, (h) LN229 cells.


