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Abstract

This study aimed to develop a forecasting model 
for the incidence of dengue in Ribeirão Preto, São 
Paulo State, Brazil, using time series analysis. The 
model was performed using the Seasonal Autore-
gressive Integrated Moving Average (SARIMA). 
Firstly, we fitted a model considering monthly 
notifications of cases of dengue recorded from 
2000 to 2008 in Ribeirão Preto. We then extract-
ed predicted values for 2009 from the adjusted 
model and compared them with the number of 
cases observed for that year. The SARIMA (2,1,3)
(1,1,1)12 model offered best fit for the dengue in-
cidence data. The results showed that the season-
al ARIMA model predicts the number of dengue 
cases very effectively and reliably, and is a useful 
tool for disease control and prevention.

Dengue; Forecasting; Brostatistics

Introduction

Dengue is a disease of great importance to public 
health in tropical nations, particularly in South-
east Asia and Central and South America. It is 
caused by four serotypes of a flavivirus – DENV1, 
DENV2, DENV3 and DENV4 – classified on bio-
logical and immunological criteria. Dengue is 
transmitted between human hosts by several 
species of day-feeding mosquitoes, such as the 
Aedes aegypti. Infection can be asymptomatic 
or it can manifest as an undifferentiated febrile 
illness, known as dengue fever, characterized 
by symptoms including fever, headaches, my-
algia and retro-orbital pain 1. Some infections 
result in dengue hemorrhagic fever (DHF), a 
syndrome that, in its most severe form, can be 
life-threatening 2.

By the final decade of the twentieth centu-
ry, Ae. aegypti and the four dengue viruses had 
spread to nearly all countries of the tropical 
world, and tens of millions are infected annual-
ly 3. In the 21st century Brazil became the country 
with the most reported cases of dengue fever in 
the world 4: more than three million cases were 
reported there from 2000 to 2005; that is approxi-
mately 70% of reported dengue fever cases in the 
Americas 5. The Southeast region of Brazil – and, 
as a special case, the city of Ribeirão Preto – has 
been most affected by dengue 6,7,8,9.

The first reported dengue outbreak in Brazil 
occurred in 1922, in Niteroi, Rio de Janeiro Sta-
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te 10, and the first laboratory-confirmed dengue 
outbreak was reported in 1981-1982, in Roraima 
State 11. After a period with no cases being diag-
nosed, the disease reappeared in Rio de Janeiro 
State in 1986, when the DENV1 virus was intro-
duced 12. In 1990, during a period of high DENV1 
activity, the DENV2 virus serotype was isolated in 
Niteroi 13, and the first cases of DHF were docu-
mented there 14. Thus, a major dengue epidemic 
in Rio de Janeiro State was caused by the simul-
taneous circulation of DENV1 and DENV2, with 
a total of 140,000 reported cases 15. In the follow-
ing years, the DENV2 serotype spread to other 
regions of Brazil, with more severe clinical pre-
sentations 16. In Ceará State, northeastern Brazil, 
DENV2 was first identified in 1994, at which time 
the first cases of DHF were notified 17. The DENV3 
serotype was first isolated in December 2000 in 
Nova Iguaçu, Rio de Janeiro State 18, marking 
the start of a period of co-circulation of DENV1, 
DENV2 and DENV3. In 2002, the number of den-
gue cases increased in susceptible populations 
that had only experienced DENV1 and DENV2 
epidemics 19, and DENV3 virus later spread more 
broadly in Brazil. In 2008, DENV4-positive sam-
ples were obtained from patients in Amazonas 
State 20, the first time this serotype was isolated in 
Brazil in 25 years. By the end of March 2010, the 
São Paulo State health authorities reported more 
than 34,000 cases of dengue 21. In 2010, approxi-
mately 30,000 confirmed cases of dengue were 
reported in Ribeirão Preto, the largest outbreak 
to date in that municipality (see http://www.cve.
saude.sp.gov.br/).

Statistical tools used in epidemiology to 
monitor and predict dengue and other infectious 
diseases have included time series analysis tech-
niques 22, such as autoregressive integrated mov-
ing average (ARIMA) models 23,24,25. In the epi-
demiological literature, recent articles have used 
ARIMA models to describe the temporal pattern 
of diseases such as influenza 26, malaria 27 and 
dengue 28,29,30,31,32.

In this paper, we study the performance of 
the seasonal ARIMA model (SARIMA) in de-
scribing and predicting the monthly number of 
notified cases of dengue in Ribeirão Preto (São 
Paulo). Using dengue incidence data from 2000 
to 2008, and the Box-Jenkins modeling approach 
33, we fit a SARIMA 34 model to dengue incidence, 
and then used the fitted model to out-of-sample 
predict dengue incidence for the year 2009.

Methods

Ribeirão Preto is a municipality in northeastern 
São Paulo State, Brazil (21°10’42” South latitude 

and 47°48’24” West longitude), with an economy 
based on agribusiness. The frequency of con-
firmed cases of dengue in Ribeirão Preto was 
obtained from the Divisão de Vigilância Epidemi-
ológica of the Secretaria Municipal de Saúde de Ri-
beirão Preto (available at http://www.ribeiraopre-
to.sp.gov.br). The dataset includes the monthly 
number of cases, and the study period was from 
2000 to 2009.

Given a stationary time series of data Y’ = (Y1, 
Y2, …, Yn), an autoregressive moving average 
(ARMA) model, denoted by ARMA (p,q), consists 
of two parts, an autoregressive (AR) part of or-
der p and a moving average (MA) part of order q. 
Thus, the ARMA model of order p and q, denoted 
by ARMA (p,q), is given by

Yt = μ + φ1Yt – 1 + φ2Yt – 2 + … + φpYt – p + εt + θ1εt – 1 + 
θ2εt – 2 + … + θqεt – q,

where μ is a constant, φ’ = (φ1, φ2,…, φp) is a vec-
tor of autoregressive coefficients, θ’ = (θ1, θ2,…, 
θq) is a vector of moving average coefficients, 
and εt are error terms assumed to be indepen-
dent, identically-distributed random variables 
sampled from a distribution with mean equal to 
zero and variance σ2ε. In time series analyses, the 
variables εt are commonly referred to as white 
noise, and they are interpreted as an exogenous 
effect that the model is not able to explain. Con-
sidering the time series of monthly dengue inci-
dence, these white noises can be, for example, 
an effect of climatic variables, prevention and 
education campaigns, introduction/reintroduc-
tion of a dengue serotype in a susceptible popu-
lation, or random factors.

If the time series show evidence of non-
stationarity, the data can be stationarized by 
introducing difference operators in the model. 
The first difference operator is given by DYt = Yt – 
Yt – 1. The k’th difference operator is given by 
Dk Yt = (1 – B)k Yt,  where B is the lag operator giv-
en by Bk = Yt – k / Yt. Thus, we obtain the autore-
gressive integrated moving average (ARIMA), de-
noted by ARIMA (p,d,q), where d is the number 
of differencing passes. The mathematical form of 
the ARIMA (p,d,q) model is

φ(B) (1 – B)d Yt = θ(B) εt,

where φ (B) = 1 – φ1 B1 – φ2 B2 –  ….– φp Bp and 
θ(B) = 1 + θ1B1 + θ2B2 + … + θq Bq. Thus, an impor-
tant issue in fitting an ARIMA model is to identi-
fy the appropriate order of differencing needed 
to stationarize the series.

A seasonal ARIMA model (SARIMA) with S 
observations per period, denoted by SARIMA 
(p,d,q)(P,D,Q)S, is given by

Ф(BS)φ(B) (1 – B)d (1 – BS)D Yt = Θ(BS) θ(B) εt ,
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where Ф(BS) = 1 – φS,1 BS – φ S,2 B2S –  ….– φ S,P BPS 
and Θ(BS) = 1 + θ S,1BS + θ S,2B2S + … + θ S,Q BQS 
are seasonal polynomial functions of order P and 
Q, respectively, which satisfy the stationarity and 
invertibility conditions.

In order to analyze the time series for dengue 
incidence in Ribeirão Preto over the years 2000 
to 2008, we defined S = 12, given that we have 12 
observations per year. Our first step used plots of 
the autocorrelation and partial autocorrelation 
functions 35,36 (correlograms of the time series) 
to identify possible values for the autoregressive 
or moving average components. The second step 
was to obtain maximum likelihood estimates for 
the parameters of the SARIMA models, accord-
ing to the different values of p, d, q, P, D and Q. 
Thirdly, we verified the goodness of fit of each 
model by plotting the autocorrelation and par-
tial autocorrelation of residuals, and by using 
the Ljung-Box test 37. The fourth step compared 
the models by the Akaike information criterion 
(AIC) 38, where the preferred model is the one 
with the lowest AIC value. Finally, we extracted 
predicted values for 2009 from the best SARIMA 
model, and compared them with the number of 
new cases observed in that year.

As a criterion for comparing the predictive 
ability of the models, let K be a measure defined 
by the sum of squared differences between pre-
dicted and observed values at each month, each 
divided by its respective predicted value. Thus, 
the preferred model is the one with the lowest 
K value.

All analyses were performed using R software 
(The R Foundation for Statistical Computing, Vi-
enna, Austria; http://www.r-project.org) 39.

Results

The monthly numbers of cases of dengue notified 
in Ribeirão Preto from 2000 to 2009 are shown in 
Table 1. Note that 2001, 2006 and 2007 are years 
with large numbers of individuals with the dis-
ease, and a graphical description of monthly 
cases of the disease (Figure 1) identifies a peak of 
cases in March, April, and May.

Let X’ = (X1, X2, …, Xn) = (8, 22, 31, 73,…, 3, 16) 
be the vector containing the monthly cases of den-
gue between the years 2000 and 2008, as shown in 
Table 1. In order to obtain a more stationary time 
series, let Y’ = (log(X1+1), log(X2+1),…, log(Xn+1)), 
instead of the original values X. In order to avoid 
taking natural logarithms of zero values, we add-
ed 1 to the number of dengue cases reported in 
each month, given that there are months with no 
cases recorded. In the absence of mathematical 
formalisms, a time series is said to be station-

ary if it oscillates around a constant mean value, 
and with a constant variance. However, a graph 
of the series Y1, Y2,…, Yn against time (not shown 
in this article) describes a rising trend, but we 
ascertained that this series can be stationary after 
one difference operation. This suggests that it is 
appropriate to consider an order d = 1 in fitting 
the model to the data.

Figure 2 shows graphs of the autocorrelation 
function (ACF) and partial autocorrelation func-
tion (PACF) of the transformed series. The shape 
of the ACF describes a seasonal effect with a pe-
riod of S = 12 months. The PACF suggests that p 
should be equal to 2 or 3, given that partial auto-
correlations are near to zero at all lags that exceed 
3, and the ACF suggests a moving average of order 
q equal to 2 or 3, given that its autocovariances 
are close to zero at all lags that exceed 3.

Table 2 shows AIC values for the SARIMA 
models corresponding to different choices of p 
and q. Problems with convergence of the compu-
tational algorithm used for estimating the model 
parameters are encountered when using D = 0. 
Therefore, we defined D = 1 in all models in Table 
2. The SARIMA model with order (2,1,3)(1,1,1)12 
has the lowest AIC of the models described in 
Table 2. For that model, the autoregressive pa-
rameters φ1 and φ2 are estimated as 1.40 (stan-
dard error – SE = 0.186) and -0.533 (SE = 0.182), 
respectively, and the moving-average parameters 
θ1, θ2 and θ3 are estimated as -1.820 (SE = 0.211), 
1.314 (SE = 0.303) and -0.494 (SE = 0.138), respec-
tively. The seasonal components φ12,1 and θ12,1 
are estimated as 0.085 (SE = 0.119) and -1.0 (SE = 
0.169), respectively.

Also for the SARIMA (2,1,3)(1,1,1)12 model, 
Figure 3 shows the standardized residuals, their 
histogram and ACF graphs and p-values for the 
Ljung-Box 37 statistic. Panel (a) of Figure 3 sug-
gests that the standardized residuals estimated 
from this model should behave as an indepen-
dent and identically distributed sequence with 
mean zero and constant variance. Panel (b) sug-
gests that the residuals are normally distributed 
(in addition, the p-value Kolmogorov-Smirnov 
test is 0.26, and we thus do not reject the null 
hypothesis of normality). The ACF of the residu-
als shown in Panel (c) suggests autocorrelations 
close to zero. This means that the residuals did 
not deviate significantly from a zero-mean white-
noise process. Panel (d) shows p-values for the 
Ljung-Box statistic. Given the high p-values as-
sociated with the statistics, we cannot reject the 
null hypothesis of independence in this residual 
series. We can therefore say that the model iden-
tified fits the data well.

The graph in Figure 4 compares the number 
of dengue cases observed between 2000 and 2008 
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Table 1

Number of recorded cases of dengue between 2000 and 2009 in Ribeirão Preto, São Paulo State, Brazil.

Month Year

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

January 8 30 53 69 0 27 292 36 88 41

February 22 80 81 86 5 66 554 151 111 101

March 31 457 73 246 6 105 1,312 656 219 353

April 73 1,308 55 240 6 175 2,366 1,019 373 441

May 48 960 56 112 7 82 1,222 664 127 372

June 19 273 7 30 0 28 175 106 55 88

July 1 60 0 10 2 12 40 46 25 23

August 6 8 0 2 0 6 19 12 16 3

September 0 6 0 2 6 3 2 4 17 13

October 0 3 0 0 0 17 6 13 8 14

November 1 1 7 0 4 59 6 5 3 46

December 1 4 14 0 10 57 3 10 16 55 

Total 210 3,190 346 797 46 637 5,997 2,722 1,058 1,550 

Source: Divisão de Vigilância Epidemiológica, Ribeirão Preto City Health Department (Secretaria Municipal de Saúde de 

Ribeirão Preto), São Paulo State, Brazil.

Figure 1

Number of notifi ed cases of dengue between 2000 and 2009 in Ribeirão Preto, São Paulo State, Brazil.
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Figure 2

Autocorrelation function and partial autocorrelation function plotted against time lag.

1a) Autocorrelation function (ACF)
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1b) Partial autocorrelation function (PACF)

Table 2

Akaike Information Criterion (AIC) values for different 

seasonal autoregressive integrated moving average 

(SARIMA) (p,1,q)(1,1,1)12 models and estimates for σ2ε.

Model AIC value Estimate for σ2ε

(2,1,3)(1,1,1)12 253.01 0.5193

(2,1,2)(1,1,1)12 256.65 0.5773

(2,1,1)(1,1,1)12 257.40 0.5956

(1,1,3)(1,1,1)12 256.19 0.5742

(1,1,2)(1,1,1)12 254.97 0.5793

(1,1,1)(1,1,1)12 256.49 0.6015

(3,1,3)(1,1,1)12 260.18 0.5741

(3,1,2)(1,1,1)12 259.30 0.5810

(3,1,1)(1,1,1)12 257.37 0.5813

with the values obtained by the SARIMA (2,1,3)
(1,1,1)12 model. The observed and estimated val-
ues agreed very closely, except for the two high-
est peaks in the time series (corresponding to 
April 2001 and April 2006), and for March 2007.

Predicted 2009 values are shown in Table 3, 
where they are compared with the observed 
number of dengue cases. Table 3 presents out-
of-sample predicted values obtained from the 
SARIMA (2,1,3)(1,1,1)12 model and other more 
parsimonious models with lower AIC values: 
(1,1,2)(1,1,1)12 and (1,1,3)(2,1,1)12. Note the rea-
sonably good match between observed and pre-
dicted dengue cases obtained by all these mod-
els for 2009. The graph in Figure 5 compares the 
observed number of dengue cases and the cor-
responding out-of-sample predicted values for 
2009 obtained from the SARIMA (2,1,3)(1,1,1)12 
model, where the vertical lines are 95% predic-
tion intervals. As the figure shows, the observed 
and predicted values are very close to each other, 
despite the relatively large range of the intervals 
associated with the out-of-sample predictions 
for March to June. K (the sum of squared differ-
ences between predicted and observed values at 
each month) equals 1039.4, 1380.4 and 1379.5, 
respectively, for the SARIMA models of orders 
(2,1,3)(1,1,1)12, (1,1,2)(1,1,1)12 and (1,1,3)(2,1,1)12. 
On that criterion, we identified the SARIMA 
(2,1,3)(1,1,1)12 as the model that best predicts 
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Figure 3

Diagnostic plots for time series fi t, seasonal autoregressive integrated moving average (SARIMA) (2,1,3)(1,1,1)12.
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the number of dengue cases recorded in 2009 
in Ribeirão Preto.

Discussion

Efforts to model dengue incidence in vari-
ous parts of the world have used statistical ap-
proaches for time series analysis. Wongkoon et 
al. 30 developed a SARIMA model on the monthly 
data collected between 2003 and 2006 in North-
ern Thailand, and found that the SARIMA (2,0,1)
(0,2,0)12 was appropriate to predict the number 
of cases of dengue hemorrhagic fever for 2007. 
Promprou et al. 29 forecasted the monthly num-
ber of dengue hemorrhagic fever cases in South-

ern Thailand by an ARIMA (1,0,1) model. Silawan 
et al. 31 showed that a SARIMA (2,1,0)(0,1,1)12 
model was suitable to determine temporal pat-
terns and forecast dengue incidence in North-
eastern Thailand. Choudhury et al. 32 showed 
that a SARIMA (1,0,0)(1,1,1)12 model was suitable 
for forecasting dengue incidence in Dhaka, Ban-
gladesh. Luz et al. 28 developed a SARIMA (2,0,0)
(1,0,0)12 model for monitoring dengue incidence 
in Rio de Janeiro, Brazil, from 1997 to 2004. All 
these studies showed that the number of dengue 
cases in a given month can be estimated by the 
number of dengue cases occurring one (when 
p = 1) or two (when p = 2) months prior. In the 
present article considering data from Ribeirão 
Preto, we also showed that the number of dengue 
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Table 3

Observed number of dengue cases in 2009 and corresponding out-of-sample predicted values obtained from seasonal 

autoregressive integrated moving average (SARIMA) models.

Month Observed values, 

2009

Out-of-sample predicted values for 2009

SARIMA 

(2,1,3)(1,1,1)12

SARIMA

(1,1,2)(1,1,1)12

SARIMA

(1,1,3)(1,1,1)12

January 41 44.7 46.0 47.8

February 101 99.0 115.7 112.5

March 353 224.9 245.8 280.0

April 441 386.6 374.8 373.2

May 372 256.7 225.1 245.3

June 88 70.4 54.8 56.0

July 23 26.4 18.9 20.3

August 3 14.8 9.9 10.3

September 13 10.5 6.8 7.2

October 14 9.1 5.9 6.1

November 46 11.7 7.8 8.3

December 55 19.4 12.6 13.1

Total 1,550 1,174.3 1,124.1 1,180.2

Figure 4

Observed number of notifi ed dengue cases between 2000 and 2008 in Ribeirão Preto, São Paulo State, Brazil, and number 

of cases estimated by seasonal autoregressive integrated moving average (SARIMA) (2,1,3)(1,1,1)12 model (represented by 

points).
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Figure 5

Observed number of dengue cases in 2009 (represented by triangles) and the respective out-of-sample predicted values 

(represented by circles) obtained from seasonal autoregressive integrated moving average (SARIMA) (2,1,3)(1,1,1)12 model. 

The vertical lines are 95% prediction intervals.
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cases in a given month can be estimated from 
the number of dengue cases occurring one and 
two (p = 2) months prior, and twelve (S = 12 and 
P = 1) months prior, but we found that a moving-
average model of order q equal to 3 is suitable for 
the data between 2000 and 2008.

The results from this study show that the sea-
sonal ARIMA model is a very effective and reliable 
predictive model for determining the number 
of dengue cases in a population, and is a useful 
tool for disease control and prevention. Allard 40 
claims that ARIMA models are a useful tool for in-
terpreting surveillance data, and that the useful-
ness of forecasting expected numbers of infectious 
disease reports consists not so much in detecting 
outbreaks or providing probability statements, 
but in giving decision makers a clearer idea of the 
variability to be expected among future obser-
vations. We found that the SARIMA model’s pre-
dictions for 2009 agree reasonably well with the 
observed incidence of dengue. However, these 
out-of-sample predictions may not be credible 
for forecasting the number of dengue cases in 
epidemic years, when the observed monthly in-
cidence is significantly higher than the expected 
number of new cases for the period. This large 
number of cases may be a consequence of a lack 
of immunity in a population exposed for the first 
time to a given dengue viral serotype. A dengue 

virus type 1 (DENV1) outbreak is known to have 
started in Ribeirão Preto in November 1990 7, and 
DENV2 and DENV3 were introduced in São Paulo 
State in 1997 and 2003, respectively (see http://
www.cve.saude.sp.gov.br/). Thus, the highest 
peaks in the time series shown in Figure 1 may 
be a direct consequence of the introduction or 
reintroduction of different serotypes. Note, how-
ever, in Figure 4, that the SARIMA (2,1,3)(1,1,1)12 
model produced good estimates at each month, 
even though the time series contains periods with 
large numbers of dengue cases. Figure 4 shows 
that the model failed to estimate the number of 
dengue cases in April 2006, but in the following 
months the model again provided estimates with 
good precision. These results suggest that the 
out-of-sample forecast values for 2009 obtained 
from the SARIMA model are not subject to an ef-
fect due to the introduction or reintroduction of 
different dengue serotypes.

In addition, climate changes have potential 
impact on dengue transmission, and in a future 
study more accurate predictions should be made 
by introducing meteorological variables such as 
temperature, pressure, humidity and rainfall into 
the model. These variables are known to be asso-
ciated with an increase in the number of available 
breeding places for Ae. aegypti and, accordingly, 
in the risk of transmission of dengue.



PREDICTING THE NUMBER OF CASES OF DENGUE INFECTION 1817

Cad. Saúde Pública, Rio de Janeiro, 27(9):1809-1818, set, 2011

Resumo

Este estudo tem por objetivo desenvolver um modelo 
para a predição do número de casos de dengue em Ri-
beirão Preto, São Paulo, Brasil, por técnicas de análise 
de séries temporais. Para isto, foi utilizado o modelo 
SARIMA (Seasonal Autoregressive Integrated Moving 
Average). Inicialmente, ajustamos um modelo con-
siderando o número mensal de casos notificados de 
dengue entre os anos 2000 e 2008 em Ribeirão Preto. 
Em uma etapa seguinte, obtivemos, com base nesse 
modelo, valores preditos para 2009, os quais compa-
ramos com os valores observados neste ano. O modelo 
SARIMA (2,1,3)(1,1,1)12 trouxe o melhor ajuste para os 
dados de incidência de dengue. Os resultados obtidos 
neste artigo mostram que o modelo SARIMA é bastan-
te eficiente em descrever o número de casos de dengue 
no período em estudo e em predizer valores em meses 
futuros, mostrando-se uma útil ferramenta para estra-
tégias de controle e prevenção da doença.
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