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Abstract

Benzene is one of the most important substances for assessment, due to its 
significant use, the environmental contamination resulting from its emission 
and the effects on human health. It is classified by the International Agency 
for Research on Cancer (IARC) as a known carcinogen to humans (group 1) 
and associated with the development of leukemia. In general, the population 
is exposed to this substance by inhaling contaminated air, which varies ac-
cording to the location and intensity of its potential sources. The petrochemi-
cal industry is one of the most important sources of this compound. The mu-
nicipality of Duque de Caxias, specifically the Campos Elíseos district, in Rio 
de Janeiro State, Brazil, houses the Industrial Complex of Campos Elíseos 
(PICE), a grouping of over 25 industries, which includes the second largest oil 
refinery in Brazil. Environmental contamination from the PICE has been rec-
ognized, but there is a lack of studies concerning its impact on the health of the 
surrounding population. S-phenylmercapturic acid (S-PMA) concentrations 
ranging from 0.80 to 8.01μg.g-1 creatinine were observed in the local popu-
lation, apparently related to hematological changes also observed in exposed 
population. The quantifiable presence of urinary S-PMA from the benzene 
metabolism is associated with the fact that 60% of the participants present 
specific hematological changes, which may be due to the environmental ben-
zene exposure. The allele and genotype frequencies of the CYP2E1 and NQO1 
enzymes observed in the study population were similar to those reported in 
other studies. The presence of the variant allele in the NQO1 genotype may be 
a risk factor for the observed hematological changes.
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Introduction

Benzene requires significant attention due to its toxicity and ubiquitous presence in several areas 
at low concentrations. It is an organic compound present and/or used as a raw material in several 
products, such as gasoline and plastic, and is classified by the International Agency for Research on 
Cancer (IARC) as a group 1 compound, a proven carcinogen to humans 1,2,3. It is currently one of the 
ten priority chemicals for study and regulation according to the World Health Organization (WHO) 4.

In terms of public health, the most significant benzene contamination route is through respira-
tion. Most inhaled benzene is eliminated by expiration, while the retained portion accumulates, 
mainly, in fatty tissues 5. After absorption, the biotransformation of benzene occurs, primarily, in the 
liver, with its secondary metabolism occurring in the bone marrow 6. Several enzymes are involved 
in this metabolism, including Cytochrome P450E1 (CYP2E1), NADPH:quinone oxidoreductase 1 
(NQO1) and Glutathione S-transferase (GST) 6. The kidneys are the main responsible organs for the 
excretion process of the generated metabolites 6.

Effects resulting from acute exposure include headaches, fatigue, dizziness, mucosal irritation, 
convulsions, excitement, depression and, eventually, death due to respiratory failure 7,8, while the 
bone marrow is the main target organ for benzene toxicity 9,10.

Chronic exposure to low benzene concentrations is associated with certain diseases, such as aplas-
tic anemia and leukemia 2,11,12,13. Some studies also suggest that exposure at different concentrations 
may increase the risk of developing non-Hodgkin’s lymphoma 11,14,15,16,17, multiple myeloma 11,15,18 
and various other hematopoietic disorders 2,11,12,13,19.

Benzene exposure in humans is monitored through biomarkers that significantly correlate to 
exposure intensity and/or biological effect caused by the substance 20, such as S-phenylmercapturic 
acid (S-PMA) and metabolic polymorphisms (CYP2E1; NQO1).

S-PMA is an aliphatic metabolite excreted in urine, with only 0.11% of absorbed benzene being 
biotransformed into this product. Its elimination half-life is of approximately 10 hours, which makes 
this metabolite a strong candidate for biomarker exposure, due to its high residence time. However, 
smoking acts as a confounding factor in S-PMA analyses, while urinary S-PMA levels are not sub-
ject to dietary interference. Urinary S-PMA has a biological exposure limit value of 25μg.g-1 cre-
atinine 21. However, since benzene is a recognized carcinogenic substance, there is no safe exposure 
limit established in Brazilian law; therefore, any S-PMA value found in the biological sample is a  
potential health risk.

Genes coding for various enzymes belonging to the benzene metabolizing routes present poly-
morphic variations, which may alter enzymatic efficiency, with consequent increases or decreases in 
the concentrations of toxicologically relevant metabolites. Studies have indicated that genetic poly-
morphisms of the CYP2E1 and NQO1 enzymes are of great importance in this process 6,22,23,24,25. 
Because these are individual characteristics inherent to the exposed organism, these variations should 
be considered when assessing the potential health impacts of population groups.

Recent studies have led to great interest in the CYP enzymatic system, since this system plays a 
significant role, mainly in phase I of the metabolism of most endogenous substances and xenobiotics, 
including organic chemicals such as ethanol, acetone and benzene 26,27,28,29,30. In humans, this family 
of enzymes is present in several organs, mainly in the liver 26, and is encoded by more than 50 genes, 
distributed throughout 10 large families, with subfamilies subdivided into isoforms 26,31.

The CYP2E1 isoform is the most active in benzene metabolism. CYP2E1 catalyzes the conver-
sion of benzene to benzene oxide (BO), as well as the conversion of hydroquinone (HQ) and catechol 
to 1,2,4-trihydroxybenzene 22,26,32,33. The location of the CYP2E1 gene in the human genome is on 
chromosome 10, in 10q24.3 26,34.

Studies investigating this isoform have reported the presence of polymorphisms in the promoter 
region at -1293 (restriction endonuclease site RsaI) and at position 7632 of the gene (restriction 
endonuclease site DraI), whose variants are associated with increased enzyme activity and increased 
risk for leukemia development, probably due to the high production of toxic intermediates 6,26,35,36.

The enzyme NQO1 acts preferentially in the bone marrow, considered a phase II enzyme in the 
chemical metabolism. It acts by reducing benzoquinones to dihydroxy-quinones, less toxic, in the 
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benzene metabolism pathway 26. Thus, the higher the NQO1 activity, the lower the action of inter-
mediary reactive metabolites in the organism 19,37,38.

In humans, the gene encoding this enzyme is located on chromosome 16 (16q22.1) and exhibits a 
functional polymorphism originating from a substitution of C→T bases at position 609 of the gene, 
which determines the exchange of proline by serine at position 187 of the protein 26.

Studies have shown that the presence of the variant allele is related to decreased enzymatic effi-
ciency and, consequently, protective NQO1 action. Individuals presenting the homozygous genotype 
may display absence of enzymatic activity.

Currently, there is a need for studies aiming at promoting the joint evaluation of biomarkers, sus-
ceptibility and effect in residents living around petrochemical poles exposed to benzene, in order to 
find possible justifications for the high leukemia hospitalization rates in these areas. In this context, 
the aim of this study was to evaluate the association of environmental exposure to benzene to several 
biomarkers in the surrounding Industrial Complex of Campos Elíseos (PICE) population, Municipal-
ity of Duque de Caxias, Rio de Janeiro State, Brazil.

Methodology

This study was carried out at the Center of Studies on Worker’s Health and Human Ecology  
(CESTEH), approved by the Sergio Arouca National School of Public Health (ENSP) Ethics Commit-
tee (Opinion 971.927, CAAE: 40514415.0.0000.5240) at the Oswaldo Cruz Foundation (Fiocruz), Rio 
de Janeiro, Brazil.

The design was of observational descriptive sectional type, applying the description of the resi-
dent population surrounding the petrochemical industries, with sampling by convenience, due to the 
difficult access to this locality.

The geographical study area was the Campos Elíseos district, located in the municipality of Duque 
de Caxias, near the PICE. The main activity in the area concerns the petrochemical industry. This 
region is home to several industries, including the Caxias Refinery (Reduc), the largest industrial 
unit in the Greater Rio de Janeiro area, Braskem, which produces as by-product a pyrolysis gasoline 
containing about 40% benzene, and the Synthetic Rubberd Factory (Fabor), both displaying significant 
importance in the development of the study area.

Inclusion criteria

The study group consisted of individuals residing up to 1,000 meters from the petrochemical Campos 
Elíseos complex, comprising male and female adults (age ≥ 18 years), of different ages and races, living 
in the area for at least 3 months.

Individuals who agreed to participate in the study signed an informed consent form, as required 
by the Brazilian Ministry of Health, Resolution n. 466/2012 concerning research involving humans. A 
total of 194 residents volunteered. Four subjects were excluded from the study, due to insufficient 
biological material for the laboratory analyses, with 190 remaining.

Information collection

First, participants answered a semi-structured questionnaire for characterizing population expo-
sure and obtaining sociodemographic data and information regarding dietary habits, daily routine, 
housing conditions and health and illness records, among others. Information was also collected to 
identify confounding factors in the study. The data were then analyzed in order to investigate pos-
sible exposure-outcome associations, and finally, to characterize the risk to which these residents are 
subjected to in their environment.
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Biological material sampling

Urine samples were collected in 20mL polyethylene bottles and sent to the CESTEH Toxicology 
Laboratory/ENSP/Fiocruz, where they were stored in an ultrafreezer (-80ºC) until the laboratory 
analyses. Blood samples for molecular analyses and blood cell counts were collected in vacuum tubes 
containing EDTA K2 as anticoagulant and stored in an ultrafreezer (-80ºC) in the same laboratory.

Organization and characterization of the study groups

To characterize the study groups, a semi-structured questionnaire was applied to obtain data regard-
ing sex, race, age, schooling and professions, and to verify frequency regarding chemical product 
handling, alcohol consumption and smoking habits in their social circles. The obtained data were used 
to minimize the influence of the confounding variables, promote the definition of resident profiles 
and delineate common habits, accurately and qualitatively identify relevant symptoms for assess-
ments concerning possible exposure-outcome associations, and characterize the risk to which these 
residents are subjected to in their environment.

Analytical procedures

•	 Urinary	S-PMA	analyses

S-PMA was determined by liquid chromatography coupled to sequential mass spectrometry (HPLC-
MS/MS) applying the methodology described by Gomes 39. Liquid-liquid extraction by low tempera-
ture partition (LLE-LTP) was applied, consisting in the addition of a reduced amount of an organic 
solvent in the sample and subsequent refrigeration of the obtained mixture to -20ºC for at least 3 
hours. Under these conditions, the aqueous phase solidifies and the organic solvent is separated, form-
ing a supernatant phase containing the solubilized analyte, which is then removed and analyzed 39.

After extraction, S-PMA concentrations were determined by high performance liquid chroma-
tography (Scientific Surveyor, Thermo Fisher Scientific, Waltham, United States) coupled to a triple 
quadrupole tandem-MS sequential mass spectrometer with electrospray ionization (ESI) (TSQ Quan-
tum model, Thermo Fisher Scientific, Waltham, United States), using the Xcalibur software (https://
www.thermofisher.com/order/catalog/product/OPTON-30487).

•	 Creatinine	determination

Creatinine concentrations in urine samples were determined using the Doles Colorimetric Kit (Pana-
má, Goiás State, Brazil) applying a picric acid reaction in an alkaline medium, after deproteinization, 
through spectrophotometry 40.

•	 CYP2E1	–	1293G>C	and	NQO1	609C>T	polymorphism	determinations

Polymorphisms were determined by genotyping using the real-time polymerase chain reaction (PCR) 
technique. Template DNA samples of each individual were obtained by extraction of genomic DNA 
by the Salting-Out technique, from 500μL aliquots of whole blood. Quantitation of extracted DNA 
was performed by fluorescence using the Qubit 2.0 fluorometer (Invitrogen, Life Technologies, 
Carlsbad, United States). A 50μg.mL-1 ratio of DNA per optical density was adopted for calculation 
purposes. Real-time PCR was carried out in a final volume of 8μL, containing 1x4μL of TaqMan 
Genotyping Master Mix (Thermo Fisher Scientific), 1x0.5μL of the TaqMan SNP Genotyping Assay 
probes (Thermo Fisher Scientific) specific for each polymorphism, CYP2E1 – 1293G>C (rs3813867) 
and NQO1 609C>T (rs1800566). Amplification conditions followed the recommendations suggested 
by the probe manufacturer.
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Statistical analyses

All statistical analyses were carried out using Excel (https://products.office.com/) and SPSS Statistics 
v.20 (https://www.ibm.com/) software programs. The frequency of each variable, urinary S-PMA 
concentrations and metabolic polymorphisms, was first investigated. Subsequently, data distribu-
tion was verified by the Kolmogorov-Smirnov test. As a normal distribution for urinary S-PMA 
was observed, parametric tests were applied. The Mann-Whitney test was used to verify possible 
differences in the mean concentrations of urinary S-PMA, residence time, smoking and metabolic 
polymorphisms. Associations between polymorphisms and urinary S-PMA levels were investigated 
through odds ratio (OR). The representation of the reference values was expressed as means, standard 
deviations and 95% confidence intervals (95%CI).

Results and discussions

Urinary	S-PMA	analyses

After optimization of the spectrometric conditions, S-PMA m/z ratios in the negative ionization 
mode were determined, as well as the multiple reaction monitoring (MRM) transitions, which were 
used for metabolite quantification, alongside retention time for compound confirmation. The analyti-
cal curves were prepared ranging from 10 to 500ng.mL-1 and were repeated for each sample batch. 
The recovery percentage of the analyte in the extraction procedure was evaluated using concentra-
tions referring to three points of the analytical curve. For each point, urine was fortified with the pre-
determined amount of the S-PMA standard prior to extraction, while another extraction was carried 
out in another aliquot of the same urine, and the same amount of S-PMA was added to the extract, 
considered as corresponding to 100% recovery. For the extraction method to be considered efficient, 
the point means should be between 70 and 120% 40,41.

All samples were extracted and analyzed over two weeks and the processing order was held after 
the collection sequence. For each day of analysis, an analytical curve was prepared, comprising three 
concentration points, and recovery evaluation was carried for one point using a single fresh pool of 
urine, used as a urine blank, composed of a mixture of five urine samples donated by non-smoking 
CESTEH workers.

To verify the daily sample processing and quality controls, the angular and linear areas of the 
curve were observed in the matrix and visually evaluated in the software for equipment analysis and 
qualitative evaluation module, concerning the fortification areas at the three concentration levels, as 
described in Rosa 40.

The final sample evaluation was performed by assessing the relationships between quantifier and 
qualifier ions. If this value was within the ion ratio range established as acceptable for qualification 
on that day of analysis, the area of the 109m/z ion obtained in each sample was then applied to the 
straight-line equation, to calculate urinary S-PMA concentration values, in μg.g-1.

From the total of 190 participants, 21 samples displayed quantifiable urinary S-PMA levels by the 
adopted method, expressed as means, median, maximum and minimum values and 25, 50, 75 and 95 
percentiles, displayed in Table 1.

The urinary S-PMA results were tested concerning normality by the Kolmogorov-Smirnov test, 
and the general data did not present a normal distribution (p < 0.05).

Of the 21 samples presenting quantifiable S-PMA levels, only two were from smokers, determined 
at 0.88 and 1.56μg.g-1 creatinine, thus indicating that exposure through smoking did not significantly 
influence group findings.

The S-PMA levels found herein are similar to findings from other studies investigating this 
biomarker in non-occupationally exposed populations, and below the biological exposure limit of 
25μg.g-1 creatinine, as defined by the American Conference of Governmental Industrial Hygienits 
(ACGIH) 21 regarding occupational exposure.

Gomes 39 applied the same extraction method and separation and detection technique to volun-
teers who were environmentally exposed to benzene and obtained a S-PMA median of 2.56μg.g-1 
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creatinine, similar to that reported in a method and application development study carried out by Fan 
et al. 42, with a median of 3.35μg.g-1 creatinine found in non-occupationally exposed groups, while 
the study carried out by Protano et al. 43 reported a median of 0.62μg.g-1 creatinine when evaluating 
395 children and adolescents not exposed to direct benzene emission sources. Johnson et al. 44, in 
a data review study on exposure of non-occupational populations to benzene (including children) 
reported mean/median urinary S-PMA values ranging from 1.2 to 16.0μg.g-1 creatinine among the  
different groups.

In this study, urinary S-PMA data were grouped into two large groups: samples presenting quan-
tifiable S-PMA levels (n = 21), termed Positive for S-PMA, and the remaining samples, whose results 
were below the limit of quantification of the method (n = 169), classified as Negative for S-PMA.

Subsequently, both groups were compared to the results for hematological parameters, through 
the association measure of the OR. Hematological components widely described as altered during 
benzene exposure were selected, namely leukocyte values (< 4,500/mm3), mean corpuscular volume 
(MCV) (above 89 fl) and neutrophils (sum of segmented rods < 3,000/mm3). The chi-square test was 
applied and the odds ratios were then calculated. The results are described in Table 2.

The results indicate that samples with quantifiable urinary S-PMA levels, which derive from the 
benzene metabolism, are associated to changes in neutrophil and MCV parameters. Although a non-
statistically significant association was observed, a trend was noted regarding the association between 
MCV and S-PMA.

Associations between the pathologies detected in this study and urinary S-PMA concentrations 
were investigated by calculating the OR of these variables. Participants presenting detectable S-PMA 
levels displayed an increased risk of also presenting one of the hematological alterations identified 
herein (dehydration, eosinophilia, thrombocytopenia associated to anemia, anemia, thrombocytope-
nia, eosinophilia, leukocytosis, leukocytosis associated to neutrophilia, leukopenia, and leukopenia 
associated to neutropenia) (Table 3). 

The values observed herein are consistent with those reported in the literature and corroborate 
that the hematological alterations observed in this study may be associated with benzene exposure, 
even at low levels, as described by other authors 9,25,44,45,46.

The OR for other variables related to levels of urinary S-PMA were also calculated, allowing the 
qualitative identification of possible benzene exposure sources, such as handling of gasoline and other 
solvents, which increases the risk of presenting quantifiable urinary S-PMA levels in 12% and 41%, 
respectively. These results were expected, as gasoline contains benzene and the types of solvents used 
by the population were not classified as to their nature.

Table 1

Urinary S-phenylmercapturic acid (S-PMA) concentrations in samples 
collected in 2016 and 2017 from Campos Elíseos residents included 
in the study. Duque de Caxias, Rio de Janeiro State, Brazil. 

S-PMA (µg.g-1 creatinine)

Mean 1.90

Median 1.36

Maximum 8.01

Minimum 0.80

P25 1.03

P50 1.36

P75 2.01

P95 3.26
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Table 2

Risk ratios of the S-phenylmercapturic acid (S-PMA) groups concerning 
changes in leukocyte, mean corpuscular volume (MCV) and neutrophil values.

S-PMA Leukocytes 
OR (95%CI)

MCV 
OR (95%CI)

Neutrophils 
OR (95%CI)

Negative 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)

Positive 0.78 (0.17-3.62) 1.29 (0.52-3.21) 2.30 (0.90-5.84)

95%CI: 95% confidence interval; OR: odds ratio.

Table 3

Odds ratio (OR) of S-phenylmercapturic acid (S-PMA) groups 
for hematological alterations identified in the study. 

S-PMA Hematological alterations 
OR (95%CI)

Negative 1.00 (Reference)

Positive 1.60 (0.64-4.02)

95%CI: 95% confidence interval.

Molecular analyses

•	 Genotype	and	allele	frequencies	of	CYP2E1	–	1293G>C	and	NQO1	609C>T	polymorphisms	
in the study population

The genotype and allele frequencies of the study population are presented in Table 4.
The allele and genotype distribution obtained in this study is similar to that reported in other 

studies evaluating the same polymorphisms in populations subjected to varying occupational and 
environmental exposure benzene concentrations 26,34,38,47,48,49,50,51,52,53,54. The genotype distribution 
displayed a Hardy-Weinberg shift for the NQO1 and CYP2E1 genes. Several studies concerning genes 
encoding metabolic enzymes that are candidates for susceptibility to toxic substances and related 
diseases have been carried out 6,26,35,36,38,55. The greater or lesser susceptibility to the development 
of certain pathologies due to differences in metabolism determined by genetic variability has been 
increasingly studied.

To evaluate the relationship between the data and the hematological parameters obtained in this 
study, an association measure (OR) was carried out. Hematological alterations related to benzenism 
were selected 56, namely leukocytes (< 4,500/mm3), MCV (above 89 fl) and, mainly, neutrophils (< 
3,000/mm3). The chi-square test was applied and the OR calculated. Results are displayed in Table 5.

The results indicate that being a carrier of the variant allele may be a risk factor for changes in 
leukocyte and MCV values, although this was not statistically significant, probably due to the small 
sample size. This association between indicators can be explained by the presence of the variant allele 
that, in the case of CYP2E1, is associated with increased enzyme activity and increased risk, probably 
due to the high production of toxic intermediates 6,26,35,36, while in NQO1 a decreased enzymatic 
activity and accumulation of toxic intermediates increased the risk for leukemia development 19,38. 
The values obtained in this study are similar to those reported in other studies, which also indicate 
increased risk for the same hematological alterations in the presence of the variant allele 22,47,57.

When evaluating the association between the genotypes of both investigated polymorphisms and 
the different hematological changes as a group – (1) eosinophilia; (2) plateletopenia + anemia; (3) 
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anemia; (4) plateletopenia; (5) plateletopenia + eosinophilia; (6) leukocytosis; (7) leukocytosis and neu-
trophilia; (8) leukopenia; and (9) leukopenia and neutropenia –, the presence of the NQO1 609C>T 
variant allele was suggested as a risk factor, despite the lack of statistical significance, probably due to 
the small sample size. This was not observed for the CYP2E1 – 1293G>C polymorphism. Although 
these results show no association in the literature, it is possible to observe that benzene exposure is 
present, due to the indicators assessed in this study.

Ye et al. 45 also observed that the presence of the variant allele confers a greater susceptibility 
to hematological changes related to benzene. Thus, participants who presented the CC genotype 
displayed a reduction in white cell counts. This corroborates the study carried out by Wan et al. 47, 
who described that the CC genotype confers greater susceptibility to benzene-benzene intoxication 
for CYP2E1 – 1293. In addition, the same study noted increased risk for the development of acute 
lymphoblastic leukemia in heterozygous individuals.

The association of the variant allele of the two analyzed polymorphisms with the risk for benzene 
hematoxicity development after exposure has also been reported in other studies 58,59. Zhang et al. 57  
evaluated the influence of genetic polymorphisms on the frequency of micronucleus formation in 
workers in the benzene-exposed footwear industry and found a small increase in the risk of micro-
nucleus formation in individuals with the variant allele.

Studies described in the literature that aimed to study the CYP2E1 as promoter of region poly-
morphism at -1293 (RsaI restriction site) justify that the variant form is associated with increased 
enzyme activity and increased risk for the development of leukemia, probably due to the high-
er production of toxic intermediates 6,26,35,36. However, the presence of the NQO1 variant allele 
decreases the protective action of the enzyme, due to lower enzymatic activity and consequent toxic  
metabolite accumulation 38,55.

Table 5

Odds ratio (OR) of the homozygous and heterozygous genotypes of the CYP2E1 – 1293G>C variant alleles and NQO1 609C>T on changes in leukocyte, 
mean corpuscular volume (MCV) and neutrophil values. 

Genotype Leukocytes 
OR (95%CI)

MCV 
OR (95%CI)

Neutrophils 
OR (95%CI)

CYP2E1 1293G>C

GG 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)

GC 1.30 (0.27-6.23) 1.76 (0.57-5.46) 0.70 (0.23-2.17)

NQO1 609C>T

CC 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)

CT, TT 1.11 (0.45-2.71) 1.06 (0.60-1.89) 0.71 (0.40-1.28)

95%CI: 95% confidence interval.

Table 4

Genotype and allele frequencies of CYP2E1 – 1293G>C and NQO1 
609C>T polymorphisms in the study population. 

Frequencies CYP2E1 NQO1

Genotype GG 93% (n = 176) CC 57% (n = 108)

GC 7% (n = 14) CT 38% (n = 73)

CC 0% (n = 0) TT 5% (n = 9)

Allele G 96% C 76%

C 4% T 24%
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Conclusions

This study carried out a biological characterization associating the evaluation of the internal dose 
biomarker (S-PMA) with susceptibility biomarkers (metabolic polymorphisms) and hematological 
alterations suggestive of benzene exposure in Campos Elíseos residents, evidencing the current pre-
carious situation of resident individuals.

Urinary S-PMA concentrations presented results similar to those reported in other studies evalu-
ating non-exposed populations. Thus, according to the results, there is no evidence to suggest that 
Campos Elíseos exposure is high when compared to other regions. However, when associations 
between S-PMA levels and other variables were investigated, increased risk with increased urinary 
S-PMA levels was observed, i.e. the greater the presence of benzene, the higher the occurrence of 
hematological alterations and associated pathologies. However, further studies are required in the 
Campos Elíseos region, including the determination of environmental indicators.

The allele and genotype frequencies of metabolic polymorphisms CYP2E1 – 1293 and NQO1 
609C>T were determined in the studied population, and the presence of the variant alleles was associ-
ated to certain blood cell count alterations, possibly related to benzene exposure.

The need to carry out new studies in this region and in other regions, particularly near petro-
chemical industries, was demonstrated herein, and further investigations concerning relationships 
between the concentrations or the presence of biomarkers assessed herein, as well as others, with 
environmental benzene levels and potential pathologies are required.
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Resumo

O benzeno é uma das substâncias mais importan-
tes para a biomonitorização, em função do uso dis-
seminado, da contaminação ambiental que resulta 
da emissão e dos efeitos sobre a saúde humana. O 
benzeno é classificado pela Agência Internacional 
de Pesquisa em Câncer (IARC) como carcinógeno 
conhecido em seres humanos (grupo 1) e está asso-
ciado ao desenvolvimento de leucemias. Em geral, 
a população fica exposta a essa substância através 
da inalação do ar contaminado, que varia de acor-
do com a localização e a intensidade das fontes po-
tenciais. A indústria petroquímica é uma das fon-
tes mais importantes desse composto. O Município 
de Duque de Caxias, especificamente o Distrito 
de Campos Elíseos, no Estado do Rio de Janeiro, 
Brasil, é sede do Polo Industrial de Campos Elí-
seos (PICE), um conjunto de mais de 25 indústrias 
que inclui a segunda maior refinaria de petróleo 
no Brasil. A contaminação ambiental produzida 
pelo PICE já é conhecida, mas faltam estudos so-
bre o impacto na saúde da população local. Foram 
observadas concentrações de ácido S-fenilmercap-
túrico (S-PMA) entre 0,80 e 8,01μg.g-1 creatinina 
na população local, aparentemente implicadas nas 
alterações hematológicas também observadas na 
população exposta. A presença quantificável do 
S-PMA urinário do metabolismo do benzeno está 
associada ao fato de 60% dos participantes apre-
sentarem alterações hematológicas específicas, o 
que pode ser devido à exposição ambiental ao ben-
zeno. As frequências alélicas e genotípicas das en-
zimas CYP2E1 e NQO1, observadas na população 
do estudo, foram semelhantes àquelas relatadas em 
outros estudos. A presença da variante alélica do 
genótipo NQO1 pode ser um fator de risco para as 
alterações hematológicas observadas.

Benzeno; Poluição Ambiental; Biomarcadores; 
Polimorfismo Genético

Resumen

El benceno es una de las sustancias más importan-
tes susceptibles de estudio, debido a su uso signifi-
cativo, la contaminación ambiental resultante de 
sus emisiones y sus efectos sobre la salud humana. 
Está clasificado por el Centro Internacional de 
Investigaciones sobre el Cáncer (IARC) como un 
conocido carcinógeno para los humanos (grupo 1) 
y está asociado con el desarrollo de leucemias. En 
general, la población está expuesta a esta sustan-
cia por inhalación de aire contaminado, que varía 
según el lugar y la intensidad de las emisiones. La 
industria petroquímica es un de las fuentes emi-
soras más importantes de este compuesto. La mu-
nicipalidad de Duque de Caxias, específicamente 
el distrito de Campos Elíseos, en Río de Janeiro, 
Brasil, alberga el Complejo Industrial de Campos 
Elíseos (PICE), un conglomerado de más de 25 in-
dustrias, que incluye la segunda mayor refinería 
de petróleo en Brasil. La contaminación ambiental 
procedente del PICE ya ha sido reconocida, pero 
es notable la falta de estudios respecto a su impac-
to en la salud de la población circundante. Se ob-
servaron en la población local concentraciones de 
ácido s-fenilmercaptúrico (SPMA por sus siglas en 
inglés) que oscilan entre los 0,80 a 8,01μg.g-1 crea-
tinina, aparentemente relacionadas con cambios 
hematológicos también hallados en la población 
expuesta. La presencia cuantificable de SPMA en 
la orina, procedente del metabolismo del benceno, 
está asociada con el hecho de que un 60% de los 
participantes presenta cambios específicos hema-
tológicos, los cuales tal vez se deben a la exposición 
ambiental al benceno. Las frecuencias alélicas y 
genotípicas del CYP2E1 y enzimas NQO1 obser-
vadas en el estudio fueron similares a las reporta-
das en otros estudios. La presencia de la variante 
alélica en el genotipo NQO1 podría ser un factor 
de riesgo para los cambios hematológicos observa-
dos.
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