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Recent advances and opportunities in research on lupus:
environmental influences and mechanisms of disease *

Avancos e oportunidades atuais na pesquisa sobre [Upus:
influéncias ambientais e mecanismos da doenga

Abstract We summarize research on mechanisms
through which environmental agents may affect the
pathogenesis of lupus, discuss three exposures that
have been the focus of research in this area, and pro-
pose recommendations for new research initiatives.
We examined studies pertaining to key mechanistic
events and specific exposures. Apoptosis leading to
increased production or decreased clearance of im-
munogenic intracellular self-antigens and defective
apoptosis of autoreactive immune cells both have been
implicated in the loss of self-tolerance. The adjuvant
or bystander effect is also needed to produce a sustained
autoimmune response. Activation of toll-like recep-
tors is one mechanism through which these effects
may occur. Abnormal DNA methylation may con-
tribute to the pathogenesis of lupus. Each of the spe-
cific exposures has been shown, in humans or in mice,
to act upon one or more of these pathogenic steps.
Specific recommendations for the continued advance-
ment of our understanding of environmental influ-
ences on lupus and other autoimmune diseases in-
clude the development and use of mouse models with
varying degrees of penetrance and manifestations of
disease, identification of molecular or physiologic
targets of specific exposures, development and use of
improved exposure assessment methodologies, and
multisite collaborations designed to examine under-
studied environmental exposures in humans.

Key words Apoptosis, Epstein-Barr virus, Silica,
Systemic lupus erythematosus, Trichloroethylene

Resumo Resumimos uma pesquisa sobre 0s meca-
nismos pelos quais agentes ambientais podem afetar
a patogenia do lapus. Discutimos trés exposiges, foco
de pesquisa na rea, e propomos recomendagdes para
novas iniciativas de pesquisa. Examinamos estudos
relativos a eventos mecanicistas e exposic@es relati-
vas. A apoptose que resulta no aumento da produgéo
ou diminui¢do da menor depuragdo de auto-antige-
nos imunogénicos intracelulares e de apoptoses de-
feituosas de células imunes auto-reativas sofre im-
plicagBes com a perda da auto-toler&ncia. Foi neces-
sario um adjuvante ou efeito do observador para ge-
rar uma resposta autoimune sustentavel. A ativagao
de receptores toll-like 6 um dos mecanismos através
do qual esses efeitos podem ocorrer. A metilagéo anor-
mal do DNA também pode contribuir a patogenia de
[Gpus. Cada exposi¢do mostrou, em humanos e ca-
mundongos, que age conforme um ou mais desses
passos patogénicos. Recomendagdes especificas ao
continuo progresso do conhecimento sobre as influ-
éncias ambientais no lGpus e outras doengas autoi-
munes compreendem o desenvolvimento e utiliza-
¢&o de modelos de camundongos com graus variados
de penetrancia e manifesta¢es da doenca, identifi-
cagdo de alvos moleculares ou fisiologicos de exposi-
¢Oes especificas, desenvolvimento e uso de melhores
metodologias de avaliacio de exposicdo e colabora-
¢Oes multisite para examinar exposi¢des ambientais
sobre 0s humanos menos estudados.
Palavras-chave Apoptose, Virus Epstein-Barr, Sili-
ca, LUpus eritematoso sistémico, Tricloroetileno
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Systemic lupus erythematosus (SLE, or lupus) is a
chronic autoimmune rheumatic disease that may
involve serious renal, cardiovascular, and neurologic
complications. The pathogenesis of lupus, as well
as other autoimmune diseases such as systemic scle-
rosis and rheumatoid arthritis, is thought to in-
volve complex interactions of multiple genes and
environmental agents. In this review we summarize
recent research pertaining to potential pathogenic
mechanisms of environmental exposures that may
be involved in the development of SLE in humans
and recommendations for new research to better
understand environmental influences and gene-
environment interactions in lupus.

Mechanisms involved
in the pathogenesis of lupus

Recent research has advanced our understanding of
mechanisms involved in the loss of tolerance and
development of a chronic state of inflammation,
with work involving the role of apoptosis in the
generation and clearance of immunogenic intrac-
ellular self-antigens, adjuvant or bystander effects,
toll-like receptors (TLRs) and innate immunity, and
abnormal DNA methylation. Environmental
exposures may act as an initiating event and influ-
ence at other points in the pathogenesis of an au-
toimmune disease.

Apoptosis as a source of self-antigens

Immune responses against self-antigens
are fundamental to lupus pathogenesis, and
dead and dying cells are a major source of the
selfantigens targeted in lupust. Consistent with this
idea, immunization of test animals with prepara-
tions of dead cells, or preparations expressing
epitopes found on dead cells, can induce lupuslike
immunity and clinical manifestations?. Moreover,
mutations that lead to impaired nonimmune clear-
ance of dead cell debris have been shown to be strong
risk factors for the development of lupus in animal
models®. Experimental evidence shows that the
clearance of dead cells can be overwhelmed when
encountering extremely high rates of cell death, lead-
ing to the induction of lupuslike disease®. Some en-
vironmental agents have been shown to induce pe-
riods of increased cell death (e.g., ultraviolet light,
viral infections)®. Notably, ultraviolet-B exposure
and viral infections can also lead to the production
of novel forms of autoantigens [such as ultraviolet
radiation—induced, covalently linked protein-RNA
conjugates®] that may be particularly favorable for

the induction of autoimmunity. It is also plausible
that environmental exposures may lead to periods
of defective or depleted dead cell clearance mecha-
nisms (caused by, for example, complement con-
sumption or reduced local macrophage levels).

Impaired elimination
of autoreactive cells via apoptosis

Although dead cell debris promotes autoreac-
tivity, the process of programmed cell death is also
critical to preventing and limiting an autoimmune
response. Specifically, apoptosis of immune cells
participating in autoimmune responses (e.g., T
cells, B cells, dendritic cells) is a major mechanism
for the induction and maintenance of self-toler-
ance”®. Just as gene mutations leading to defects in
immune cell apoptosis have been linked to increased
risk for the development of lupus®, environmental
factors influencing the set point at which autoreac-
tive cells undergo apoptosis also appear to influ-
ence lupus susceptibility. An example in mice is the
ability of estrogen to protect autoreactive B cells
from programmed cell death™®. Conversely, impair-
ments in the ability of cytotoxic cells to eliminate
autoreactive immune cells appear to enhance the
risk of lupus'. Environmental exposures that se-
lectively impair apoptosis of immune system cells
may predispose to lupus in a manner that syner-
gizes with exposures that increase target tissue ap-
optosis. Once established, the development of
autoreactive immune memory cells (with impaired
apoptosis compared with naive cells) and the in-
duction of lupus target organ injury (with in-
creased local cell death due to the effects of lupus)
can lead to a self-sustaining and selfamplifying cy-
cle of lupuslike autoimmunity.

The adjuvant or bystander effect

What mechanisms prevent the unlimited pro-
liferation of T cells that are capable of recognizing
self-antigens? T-cell receptor engagement alone is
ineffective in activating the pathways needed to
produce the proinflammatory cytokines and other
growth factors required for the induction of the
pathogenic autoimmune response. A second, non-
antigen-specific signal determines whether an en-
counter with a potential selfantigen is aborted at
an early stage, proceeds only to a limited, harmless
autoimmune response, or progresses to a patho-
genic outcome. The secondary signals involved in
modulating the immune response have collective-
ly been termed the “adjuvant effect”; another term
for these signals is the “bystander effect2,



Information has accumulated rapidly in recent
years that allows us to better understand the adju-
vant effect at a molecular level. A vivid illustration
of the importance of the adjuvant effect in the in-
duction of autoimmune disease was revealed by
studies of autoimmune myocarditis. This disease
can be induced in susceptible strains of mice by
infection by Coxsackievirus B3 or, alternatively, by
immunization with purified cardiac myosin®3. The
cardiac myosin immunization must, however, be
accompanied by a powerful adjuvant, complete
Freund adjuvant, which includes the mycobacteri-
um component. Incomplete Freund adjuvant re-
sults in the production of myosin-specific antibod-
ies without the occurrence of inflammatory lesions
in the heart muscle. In resistant strains of mice that
do not develop disease after Coxsackievirus B3 in-
fection or cardiac myosin immunization, cotreat-
ment with bacterial lipopolysaccaride results in a
florid disease®. This disease is dependent upon the
prompt production of the key early proinflamma-
tory cytokines, interleukin-1 and tumor necrosis
factor-o®. Mast cells are critical players in the ini-
tiation of the adjuvant effect that occurs early after
viral infection®®.

Another series of experiments used a surrogate
marker of the adjuvant effect: a sudden drop in the
thyroid hormone thyroxine that occurs after im-
munization using complete Freund adjuvant?’.
These studies indicate that TLRs or similar recep-
tors of the innate immune response are critical for
mounting the adjuvant effect. Thus, active infection
or products of the infection can provide the adju-
vant effect necessary for the induction of many
autoimmune disorders. The adjuvant effect de-
pends upon early nonantigen- specific signals that
initiate an innate immune response. It shapes the
later adaptive response that is directly responsible
for pathogenic autoimmunity. The potential role
of other environmental agents in the induction of
an adjuvant effect of this type and the role of an
adjuvant effect specifically in lupus are important
areas of research.

In addition to providing antigenic stimuli to B
cellsand T cells, nucleic acid components associated
with dead cell debris have been shown to activate
the adjuvant effect through TLR activation®®. RNA
activation of TLR7 on B cells and plasmacytoid
dendritic cells has been particularly strongly asso-
ciated with lupus pathogenesis, based on its role as
the genetic risk gene for amurine model of inherit-
ed lupus®® and its ability to induce lupus-associat-
ed type | interferon production®. The RNA-sens-
ing TLR3 has also been implicated as an inducer of
inflammation in a variant form of lupuslike dis-

ease?!, and the DNA-sensing TLR9 has been asso-
ciated with lupus nephritis in some models??. How-
ever, these innate immune receptors have also been
associated with downregulation of immune re-
sponses under some circumstances®. Adjuvant ef-
fect signals may influence the tissues targeted by
autoantigen-specific innate immune responses by
selectively increasing inflammatory responses in
some tissues and decreasing the inflammatory re-
sponses in others?.

Environmental factors could influence TLR re-
sponses and hence the adjuvant effect in lupus in
multiple ways. Radiation, chemical toxins, or mi-
crobial products may selectively activate or inhibit
general innate immune response pathways or se-
lectively influence a single TLR pathway to influ-
ence the induction of lupus. Moreover, recent
identification of lupus risk factor genes with func-
tions in interferon responses? and as more gener-
al mediators of innate immune signaling, as in the
case of STAT4%, suggests that innate immune path-
ways subject to environmental influences in addi-
tion to TLRs may prove to be relevant to lupus
pathogenesis. Deficiencies in the complement sys-
tem may result in the aberrant clearance of apop-
totic cells, and specific deficiencies have been impli-
cated in the pathogenesis of SLE?.

Epigenetics: DNA demethylation
and pathogenic T and B cells

Environmental factors may also induce autoim-
munity through epigenetic mechanisms. Epigenet-
ics is defined as heritable changes in gene expres-
sion that occur without a change in DNA sequence,
and the best-characterized mechanism is DNA me-
thylation. DNA methylation, the postsynthetic me-
thylation of cytosines in CG pairs, silences genes by
altering chromatin structure into a transcriptional-
ly repressive configuration. The methylation of
previously unmethylated sequences is mediated by
the de novo DNA methyltransferases Dnmt3a
and Dnmt3b. A more detailed discussion of meth-
ylation and epigenetics is provided in a recent re-
view?,

DNA methylation patterns are established dur-
ing development and suppress genes that are in-
appropriate or detrimental to the function of any
given cell type. Inhibiting lymphocyte DNA meth-
ylation during mitosis alters gene expression, re-
sulting in immunogenic changes that can alter the
response to self-antigens, including overexpression
of the adhesion molecule LFA-1 (CD11a/CD18), the
cytotoxic molecule perforin, and B-cell costimula-
tory molecules CD70 and CD40L?°. LFA-1

-
oo
o
~

6002 ‘9/8T-G98T:(S)¥T ‘AII3I0D SPNES P BIOURID



[N
[ee]
(o2}
e}

Cooper Getal.

overexpressing T cells are autoreactive, resembling
the T cells that cause lupuslike chronic graft-ver-
sus-host disease. Perforin overexpression contrib-
utes to autologous macrophage killing by the
autoreactive cells, with subsequent release and im-
paired clearance of antigenic nucleosomes, whereas
CD70and CD40L overexpression overstimulate B-
cell immunoglobulin production®®. The CD40L
overexpression occurs only in women, as CD40L
isencoded on the X chromosome®. Injecting dem-
ethylated T cells into genetically identical mice causes
a lupuslike disease with anti-DNA antibodies and
an immune complex glomerulonephritis®2. These
functional changes suggest a model in which hy-
pomethylated T cells kill macrophages and perhaps
other antigenpresenting cells (APCs), causing an
increase in apoptotic material that promotes an
anti-DNA response, which is further augmented
by increased antibody production.

Studies in lupus patients also suggest that T-
cell DNA demethylation may be fundamental to
the disease process. CD4+ T cells from patients with
active lupus overexpress LFA-1, perforin, CD70,
and CD40L because of demethylation of the same
sequences demethylated by a Dnmt inhibitor32.
Further, CD4+ lupus T cells demonstrate functional
changes identical to T cells demethylated in vitro,
with perforin-dependent autoreactive macrophage
killing and CD70/CD40Ldependent B-cell over-
stimulation®-,

The evidence summarized above suggests that
aberrant T-cell DNA methylation contributes to
lupus pathogenesis. DNA methylation silences one
X chromosome in women, and suppresses para-
sitic viral DNA. Thus DNA methylation may rep-
resent one pathway that may influence the marked
sex difference in incidence of lupus in humans, as
seen with the example of sex-specific CD40L
overexpression and B-cell stimulation. Further
support for the association between T-cell
DNA methylation and lupus can be found in re-
ports that hydralazine and procainamide, which
cause antinuclear antibodies in most people and a
lupuslike disease in a subset, are DNA methylation
inhibitors. Procainamide acts through inhibition
of the DNA methyl transferase enzyme Dnmt1%,
and hydralazine acts through the extracellular sig-
nal- regulated kinase (ERK) signaling pathway®.
The signaling defect in lupus and in hydralazine-
treated T cells maps to protein kinase C (PKC)-
&%, supporting commonality of mechanisms. Ul-
traviolet light also triggers lupus flares, inhibits
ERK pathway signaling, and is a DNA methyla-
tion inhibitor?®. These examples suggest that
other xenobiotics could contribute to the develop-

ment or exacerbation of lupus in some patients by
similar mechanisms. Agents (e.g., dietary deficien-
cies) that deplete the pool or biosynthesis of the
methyl donor or that inhibit key enzymes or the
signaling pathways (e.g., increased homocysteine
levels) could lead to increased inhibition of the re-
action. Finally, reports that methyl donor restric-
tion during fetal development can cause lifelong
effects® raises the possibility that nutritional defi-
ciencies or exposure to toxicants during pregnan-
cy may affect lupus susceptibility later in life.

Viral, solvent, and particulate exposures
and the pathogenesis of autoimmune disease

In the previous section we described mechanisms
through which different environmental exposures
could affect the development of lupus and other
systemic autoimmune diseases. Here we discuss
three examples of exposures. Although consensus
does not exist regarding all of the issues with re-
spect to each exposure and the development of lu-
pus, these three diverse exposures have generated
interest from lupus researchers, based on poten-
tial connections to elements identified in the lupus
disease pathway. Of these, the environmental
exposure with the most developed literature sug-
gesting a link with SLE is Epstein-Barr virus (EBV).
EBV is a nearly ubiquitous pathogen that has been
associated with lupus in studies using serologic and
DNA measures. Its high worldwide prevalence rais-
es the key question of how a common environ-
mental exposure leads to disease in only a very small
subset of infected individuals® and suggests that
differences in EBV infection or differences in the
host immune response to the infection may be key
considerations. Although the first study of occu-
pational respirable silica exposure and systemic
autoimmune disease was published almost
100 years ago [reviewed by Brown et al.®); Parks
et al.*], it is only in the past decade that this rela-
tionship has become the focus of mechanistic stud-
ies in animal models, taking its historical label as
an adjuvant to the molecular level. These examples
further illustrate how exposures can lead to a se-
ries of events from the initial initiating impact
to multiple levels of the immune response. Trichlo-
roethylene is acommonly used solvent and poten-
tial air and water contaminant; solvents have been
most consistently associated in epidemiologic stud-
ies with systemic sclerosis®. In experimental
studies of trichloroethylene using the MRL+/+
mouse model, however, autoimmune hepatitis,
skin inflammation, and alopecia were seen. These



observations highlight the critical gaps in our un-
derstanding of the expression of autoimmune dis-
ease in animals and humans.

EBV: asummary of three decades of research

EBV was offered as a potential environmental
factor in SLE as early as 1972. Pediatric lupus pa-
tients, used as controls in a study of EBV and child-
hood lymphoma, were found to have an enriched
frequency of EBV serology compared with other
children®. During the following few decades, de-
bate raged [for a historical review, see McClain et
al.*?]. Evidence of induced models, molecular mim-
icry, adjuvant or bystander effects, viral DNA
association, increased viral loads, differential
EBV gene expression, and abnormal EBV T-cell and
B-cell responses in lupus have recently all provided
additional support for potential roles for EBV in
lupus [reviewed by Poole et al.**] .

Early targets of key lupus autoantigens
are often restricted and then diversify over time in
a concept termed epitope spreading*-. These ini-
tial lupus autoantigen humoral targets have prov-
en quite interesting in that immunization of select
animal strains with these sequences constructed on
a polylysine backbone develop not only antibodies
to the peptide of immunization, but also antibod-
ies that bind to the parent protein and eventually
develop other autoantibody specificities and clini-
cal features of systemic autoimmunity“. Interest-
ingly, initial targets of Sm B” and 60kD Ro are cross-
reactive with sequential regions of EBV nuclear
antigen-1 (EBNA-1), the key latent protein of EBV.
This work suggests potential pathways for
molecular mimicry to lead to subsets of lupus.

Using new sensitive ELISA assays, studies of
pediatric and adult lupus patients and healthy con-
trols drawn from relatives or a large pedigree study
have shown an association of EBV seroconversion
and SLE [reviewed by James et al.*’; McClain et
al.’8; Poole et al.**]. In addition, several studies also
evaluated the presence of EBV DNA in peripheral
blood mononuclear cells and showed an associa-
tion between EBV DNA presence and lupus*-. Lu-
pus patients had a 15-fold to 30-fold> increase
in EBV DNA in the peripheral blood compared with
controls; however, no difference in EBV DNA lev-
els was found in mouthwash samples®. The con-
trols in these studies were described as healthy and
were matched by demographic factors, but the
recruitment process was not described in detail.

More recent studies using isolated B cells from
lupus patients and controls showed a 10-fold in-

crease in infected cells as well as differences in EBV
gene expression®. These increased levels of EBV
infection and gene expression in lupus patients
could lead to a) a stronger or altered immune re-
sponse to EBV proteins with resultant crossreac-
tive self immune responses, b) an increased activa-
tion state of the host immune response, ¢) a proin-
flammatory cytokine environment, which could
result in easier breaks in tolerance, or d) potential
EBV-infected autoreactive cells, which could lead
to autoantibody formation and/or pathogenic re-
sponses.

The host immune response to EBV is also dif-
ferent in lupus patients compared with lupus-un-
affected controls. Lupus patients have higher num-
bers of CD4+ T cells but lower numbers of CD8+
T cells, which produce interferon-4 in response to
EBV®. These abnormal responses could contrib-
ute to the changes in EBV load seen in lupus pa-
tients or provide additional help for abnormal B-
cell responses. Antibody responses to EBV are also
different. Lupus patients have antibodies against a
broad spectrum of early diffuse EBV proteins®
as well as a higher frequency of antibodies to
a larger number of latent nuclear antigens such as
EBNA-2 and EBNA-3%5. At least two groups to
date have shown higher IgA responses in lupus
patient sera®%®, One of these studies involved a
comparison group recruited through a popula-
tion-based sampling procedure®. SLE reactivities
are most similar to patients with chronic viral re-
activation. Interestingly, pediatric lupus patients
have a broader humoral immune response against
EBNA-1 with a larger number of specific humoral
epitopes. Areas of reactivity outside of the com-
monly targeted glycine-alanine repeat are cross-
reactive with common early epitopes of self-anti-
gens and are potential targets of molecular mimic-
ry®. Other groups have also found SLE unique hu-
moral immune responses to EBNA-1°,

A variety of bystander (or adjuvant) effects as
outlined above for different mechanisms could also
be quite important, serving as key links between
EBV, and potentially other pathogens, and lu-
pus®® EBV is known to act through different
TLRs, which could lead to interferon production,
abnormal self-antigen presentation, T-cell activa-
tion, cytokine production, and loss of tolerance.
EBV has a viral interleukin-10 homolog, which
could induce inappropriate APC activation, as well
as a bcl-2-like homolog, which can inhibit apoptosis
of infected cells. Additional evaluation of unique
SLEspecific bystander responses to pathogens
are warranted.
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Silica: modeling overlapping pathologies
for mechanistic clues

Inhalation of silica is associated with overlap-
ping pathologies of inflammation, fibrosis, and
autoimmunity. Critical genetic risk factors that
confer either susceptibility or, perhaps more
intriguingly, protection from silicate-induced
autoimmune changes, have not been identified, but
clues to early events in autoimmunity may come
from studies of the pulmonary effects of silica and
the immune dysfunction related to fibrosis®®%,
Mouse strains with different susceptibilities to fi-
brosis and inflammation make them valuable for
teasing apart early processes related to macroph-
age activation, cytokines, and gene regulation re-
lated to silica®*.

New Zealand mixed (NZM) mice showing a
mild lupus-prone phenotype® exhibit exacerba-
tion of lupus pathology after intratracheal silica
exposure®. Survival in silicaexposed NZM mice
was decreased, with increased proteinurea levels
and immunoglobulin (Ig) G deposition suggest-
ing exacerbated kidney damage. The lungs in these
mice also had increased inflammatory infiltrates
and fibrotic lesions that were well established after
14 weeks, concurrent with significant elevation of
autoantibody levels®. Although there are limited
data in mice regarding their chronological relation-
ship, there is some evidence that autoantibodies
precede and contribute to fibrotic changes in hu-
mans [reviewed by Jindal and Agarwal™].

It has been hypothesized that these overlapping
outcomes may be related at the level of innate im-
mune responses (adjuvant effect) to silica, possibly
via scavenger receptors such as SR-A and MARCO
on macrophages and mast cells™>2. Mice lacking
either SR-A or MARCO show different responses
to silica versus titanium dioxide, which causes in-
flammation but not fibrosis or autoimmunity. In
addition, there are striking differences in expression
of these receptors and silica uptake by cells
from Balb/c and C57BI/6 mice™, offering strain and
receptor explanations for differential fibrotic
susceptibility. The role of scavenger receptors as
proinflammatory pathways is complicated by their
additional roles in apoptosis induction and
the clearance of apoptotic debris. A possible unify-
ing model implicates silica-induced apoptosis of the
very cells needed for apoptotic clearance, in an en-
vironment of silicaenhanced antigen presentation
by dendritic cells or alternately activated macroph-
ages®®™, similar to the autologous macrophage kill-
ing caused by demethylated T lymphocytes?.

The silica-induced exacerbation of

lupus pathology in NZM mice was ameliorated
in mice coinstilled with rottlerin, a putative PKC-0
inhibitor™. Although rottlerin can have PKC-6-in-
dependent effects’™, as a PKC-0 inhibitor, it is anti-
apoptotic™. Further supporting the role of apop-
tosis in the exacerbation of the NZM lupus model,
autoantibodies in silica-exposed mice were shown
to bind to macrophages undergoing apoptosis”.
In addition, the Fas/Fas ligand system is up-regu-
lated with silica exposure in both humans and ro-
dents, which could affect its autoimmune effects
by increasing apoptosis™™. Because silica can
cause oxidative stress and apoptosis in macroph-
ages®®® it is possible that these events lead to clus-
tering or proteolytic cleavage of autoantigens.
Studies have shown that silica can lead to altered
proteosomal processing of specific scleroderma
autoantigens®2®® and activation of apoptotic path-
ways involving various caspases®.

Much of the recent data regarding the effects of
silica on lymphocyte populations in mouse mod-
els of lupus were recently reviewed®. In silica-ex-
posed NZM mice, lymph nodes had local reduc-
tion in regulatory T cells despite a dramatic increase
in CD4+ T cells®. Wu et al.® have shown that the
function of regulatory T cells is reduced in silicosis
patients. Recently, Carlsten et al.® evaluated sever-
al serologic measurements for their potential as
early markers of immunologic effects of occupa-
tional silica exposure in 11 men and found a re-
duction of CD25+ T cells and some increases in T-
helper cell (Th)1 and Th2 serum cytokines. How-
ever, the study design did not distinguish the CD25+
cells as activated versus regulatory T cells. In NZM
mice, a relative reduction in serum 1gG1, along with
elevated tumor necrosis factor-a in lung lavage,
suggested a possible Thl skewing by silica®, con-
sistent with studies in rats and non-lupus-prone
mice® 28, Although the roles of tumor necrosis fac-
tor-a. and Th1/Th2 cytokines in lupus remain
unclear®®®, reported increases of interferon-g with
silica are consistent with development of lupus®,

Clearly, silica affects the immune system at sever-
al levels that could play roles in lupus pathogenesis.

Trichloroethylene effects
in a lupus mouse model

The female MRL+/+ mouse develops
a lupuslike disease late in life (50% mortality at 17
months) and has been used in a series of studies of
trichloroethylene. Short-term intraperitoneal
trichloroethylene exposure (10 mmol/kg every 4
days for 6 weeks) resulted in increased spleen weight,
as well as some serum markers of systemic



autoimmunity including total IgG and antinuclear
antibodies®. A chronic oral exposure study (21,
100, or 400 mg/kg/day trichloroethylene in drink-
ing water for 32 weeks) also resulted in an acceler-
ated autoimmune response, with increased anti-
nuclear antibodies after 4 weeks of exposure to
concentrations as low as 21 mg/kg/day®?. Chronic
treatment with trichloroethylene did not acceler-
ate the development of the lupus nephritis, but af-
ter 32 weeks of exposure, tissue pathology com-
mensurate with autoimmune hepatitis was seen.
In both mice and humans the majority of trichlo-
roethylene absorbed into the circulation is metab-
olized by an oxidative pathway in the liver*3, con-
verting trichloroethylene to trichloroacetaldehyde,
which in solution is in equilibrium with trichloro-
acetaldehyde hydrate. Female MRL+/+ mice treat-
ed for 40 weeks with drinking water containing
concentrations of trichloroacetaldehyde hydrate
that encompassed the molar equivalents of previ-
ous lowlevel trichloroethylene exposure did
not develop autoimmune hepatitis or lupus
nephritis but did develop a dose-dependent
alopecia and skin inflammation®.

Trichloroethylene and trichloroacetaldehyde
hydrate were also shown in these experiments to
increase percentages of activated interferon-a pro-
ducing CD4+ T cells®*%. A recent study that re-
ported higher levels of interleukin-2 and interfer-
on-& levels in 35 trichloroethylene-exposed work-
ers (mean exposure levels 35 mg/m3) compared
with 70 nonexposed workers® provides evidence of
similar early immune responses in humans and the
MRL+/+ mouse model.

During its metabolism, some trichloroethylene
is converted to a trichloroethylene oxide reactive
intermediate, which may ultimately lead to the for-
mation of N6-formy! lysine or N6-dichloroacetyll-
ysine adducts. These adducts have been detected
as stable neoantigens in the liver of trichloroethyl-
ene-treated MRL+/+ mice¥, and adduct-specific
antibodies have been detected in trichloroethylene-
treated MRL+/+ mice®. Trichloroethylene treat-
ment also promoted the development of antibodies
specific for unmodified liver microsomal pro-
teins®®. Thus, it appeared that trichloroethylene
exposure could trigger an immune response against
both unmodified and trichloroethylene modified
liver proteins. Trichloroethylene may also perturb
the immune system through the induction of oxi-
dative stress, as seen by the increased serum levels
of inducible nitric oxide synthase (iNOS) and ni-
trotyrosine in a chronic duration (48 weeks) drink-
ing-water exposure study in female MRL+/+
mice!®. Antibodies against lipid peroxidation-de-

rived aldehydes malondialdehyde and 4-hydrox-
ynonenal were also seen. At least some of the oxi-
dative stress generated by trichloroethylene oc-
curred in the liver*. Although trichloroethylene-
induced adducts and oxidative stress can be im-
munogenic, the role of these altered selfantigens and
the resulting antibodies in disease pathology re-
mains to be determined.

T-cell resistance to activation-induced apopto-
sis has been seen in patients with lupus, alopecia,
and scleroderma®®-1® and was also seen in these
studies of trichloroethylene-exposed mice. Almost
88% of the activated CD4+ T cells isolated from
control MRL+/+ mice at the 4-week time period
were induced to undergo activation-induced
apoptosis in vitro. In contrast, only 57% of CD4+
T cells from mice exposed for 4 weeks to trichloro-
acetaldehyde hydrate underwent apoptosis. This
effect was subsequently linked to a decrease in FasL
expression on the CD4+ T cells'®. A trichloroace-
taldehyde hydrate—induced downregulation of
FasL could enable activated selfreactive CD4+ T
cells to escape Fas-mediated deletion but retain ef-
fector function.

Gilbertet al. developed a model to synthesize the
results from these experiments. Metabolism of in-
gested trichloroethylene leads to the generation of
adducts on liver proteins such as CYP2EL. Trichlo-
roethylene also induces oxidative/nitrosative stress
in the liver. The damaged liver cells expressing chem-
ically modified antigens may be taken up by
phagocytic cells such as Kupffer cells or hepatic
stellate cells. Chemokines secreted by the phago-
cytic cells help recruit CD4+ T cells, which are then
presented with unmodified and/or modified liver
antigens. Normally, liver-specific CD4+ T cells
would be deleted by activation-induced apoptosis
before they mediated pathology. However, trichlo-
roethylene works via metabolite trichloroacetalde-
hyde hydrate to downregulate expression of FasL
on the CD4+ T cells, thereby decreasing their sus-
ceptibility to Fasmediated apoptosis. This effect
increases longevity of liver-specific CD4+ T cells
and thus promotes liver damage commensurate
with autoimmune hepatitis. Mice treated with
trichloroacetaldehyde hydrate directly do not un-
dergo hepatic adduct formation and/or oxidative
stress. Consequently, trichloroacetaldehyde hy-
drate—-mediated inhibition of activation-induced T-
cell apoptosis does not manifest itself as hepatitis.
The reason why the inflammatory disease is in-
stead directed to the skin and the applicability of
this model to specific autoimmune diseases in hu-
mans (including lupus, scleroderma, and autoim-
mune liver disease) remain to be determined.
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Research gaps and recommendations

Federal agencies and private foundations have or-
ganized several meetings in recent years concern-
ing many aspects of lupus, including the sex and
ethnic disparities and prospects for development
of new treatments. The goal of one workshop, “Lu-
pus & the Environment: Disease Development,
Progression and Flares” (held 8-9 September 2005
in Washington, DC), was to appraise the state of
the science and produce recommendations for
new research to better understand environmental
influences and gene—environment interactions in
lupus. The workshop produced a prioritized list of
recommendations for research support. Similar
issues are described in Future Directions of Lupus
Research, a recent publication from the National
Institute of Arthritis and Musculoskeletal Diseas-
es'%. Progress has been made and some interesting
research has been published since this workshop,
but the recommendations that came out of the
workshop continue to apply:

. Continued development and increased use of
improved lupus-prone and non-prone animal
models that are appropriate for research on mech-
anisms linking environmental exposures to lupus.
Models with varying degrees of penetrance and
varying manifestations of disease are needed.

. Identification of molecular or physiologic
targets of exposures leading to either incidence or
progression of lupus, building on studies of emerg-
ing concepts such as epigenetics, posttranslational
steps, metabolic mechanisms, understanding by-
stander/adjuvant effects of exposure, investigation
into “inappropriate” autoimmune responses to
common exposures, and multiple exposure stud-
ies that test synergy of various factors or agents.

. Development and dissemination of improved
technologies and instrumentation to assess envi-
ronmental exposures integrated over the relevant
etiologic time period, including geocoding meth-
ods for use with geographic information sys-
tems® and biosensors'®’, techniques involving
specific biomarkers of exposure, and question-
naire- or interviewbased derivation of specific ex-
posure histories®.

. Multisite collaborations with standardized
protocols for collection of environmental exposure
data focusing on the period before development
of clinically expressed disease. These large-scale
studies are needed to address the considerable
heterogeneity among lupus patients in genotypic
profile, in serologic and phenotypic expression,
and potentially in etiologic pathways.

. Further study of gene—environment interac-
tions in both human and animal settings. Of par-
ticular interest is the identification of lupus-specif-
ic versus more general autoimmune disease genes
and the exposures that trigger flares for particular
genomic profiles.

Our understanding of the mechanisms involved
in the pathogenesis of lupus continues to expand.
This understanding provides the opportunity to
begin to assess whether and how environmental
exposures contribute to this process. Clearly the
specific environmental exposures discussed in this
review are unlikely explanations for the extreme
disparity in disease rates seen among women and
among ethnic minorities. It will take much more
work from a variety of disciplines to address these
issues. We believe that acting on these recommen-
dations will enhance our ability to design research
studies that address both how and why the pa-
thology of lupus arises, so the devastating impact
of this disease can be ameliorated.
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