CADERNOS DE SAÚDE PÚBLICA REPORTS IN PUBLIC HEALTH

Impact of the consumption of ultra-processed foods on children, adolescents and adults' health: scope review

Impacto do consumo de alimentos ultraprocessados na saúde de crianças, adolescentes e adultos: revisão de escopo

Impacto del consumo de alimentos ultraprocesados en la salud de niños, adolescentes y adultos: revisión de alcances Maria Laura da Costa Louzada¹ Caroline dos Santos Costa² Thays Nascimento Souza¹ Gabriela Lopes da Cruz¹ Renata Bertazzi Levy¹ Carlos Augusto Monteiro¹

doi: 10.1590/0102-311X00323020

Correspondence

Abstract

The aim of this study was to conduct a literature scope review of the association between the consumption of ultra-processed foods and health outcomes. The search was carried out in the PubMed, Web of Science and LILACS databases. Studies that assessed the association between the consumption of ultraprocessed foods, identified on the NOVA classification, and health outcomes were eligible. The review process resulted in the selection of 63 studies, which were analyzed in terms of quality using a tool from the National Institutes of Health. The outcomes found included obesity, metabolic risk markers, diabetes, cardiovascular diseases, cancer, asthma, depression, frailty, gastrointestinal diseases and mortality indicators. The evidence was particularly consistent for obesity (or indicators related to it) in adults, whose association with the consumption of ultra-processed foods was demonstrated, with dose-response effect, in cross-sectional studies with representative samples from five countries, in four large cohort studies and in a randomized clinical trial. Large cohort studies have also found a significant association between the consumption of ultra-processed foods and the risk of cardiovascular diseases, diabetes and cancer - even after adjusting for obesity. Two cohort studies have shown an association of ultra-processed foods consumption with depression and four cohort studies with all-cause mortality. This review summarized the studies' results that described the association between the consumption of ultra-processed foods and various non-communicable diseases and their risk factors, which has important implications for public health.

Industrialized Foods; Food Consumption; Chronic Disease; Review

M. L. C. Louzada Núcleo de Pesquisas Epidemiológicas em Nutrição e Saúde, Faculdade de Saúde Pública, Universidade de São Paulo. Av. Dr. Arnaldo 715, sala 27, São Paulo, SP 01246-904, Brasil. maria.laura.louzada@usp.br

¹ Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, Brasil.

² Universidade de São Paulo, São Paulo, Brasil.

This article is published in Open Access under the Creative Commons Attribution license, which allows use, distribution, and reproduction in any medium, without restrictions, as long as the original work is correctly cited

REVIEW

Introduction

Ultra-processed foods, as defined by the NOVA classification, are industrial formulations of substances extracted or derived from foods, that contain little or no whole food in their composition and typically it is added flavorings, dyes, emulsifiers and other additives that modify the sensory attributes of the final product. The ingredients and procedures used in the manufacture of ultra-processed foods aim to create low-cost, hyper-palatable and convenient products, with the potential to replace fresh or minimally processed foods ¹.

Food sales statistics indicate higher consumption of ultra-processed foods in high-income countries, but rapid and exponential growth in middle-income countries. Between 1998 and 2012, snacks and soft drinks sales increased by 50% in the upper-middle income countries and by more than 100% in the lower-middle income countries ². National surveys show that ultra-processed foods are already half or more of the total energy consumed in some high-income countries, such as the United States, Canada and the United Kingdom ^{34,5,6}, and between one-fifth and one-third of the energy consumed in middle-income countries, such as Chile and Mexico ^{7,8}. In Brazil, surveys on the acquisition of foodstuffs for household consumption, carried out in the metropolitan areas between 1987-1988 and 2008-20099 and in the country as a whole between 2002-2003 and 2017-2018 ¹⁰, indicate systematic increases in the participation of ultra-processed foods and a reduction in concomitant of fresh or minimally processed foods and culinary ingredients.

Previous studies show that ultra-processed foods, together, have a higher energy density, more free sugar and unhealthy fats and less fiber, protein and micronutrients than non-ultra-processed foods, and that their acquisition or consumption is systematically associated with the deterioration of the nutritional food quality ^{3,4,5,6,7,8,11,12}. Experimental studies also show that when compared to non-ultra-processed foods, ultra-processed foods have a low satiety power and induce high glycemic responses ¹³, that are associated with a higher speed of energy intake ¹⁴ and the presence of contaminants, including toxic compounds newly formed during processing or released synthetic packaging ^{15,16} and create an intestinal environment that favors microbes that promote inflammatory diseases ¹⁷. Therefore, studies with different designs have investigated the association between the consumption of ultra-processed foods and the diseases or risk factors for diseases in different populations. However, there is still no clarity about the totality of information available in this rapidly growing field of publications. Consequently, the present scope review was conducted in order to map the literature about the impact of ultra-processed foods on health.

Methods

Eligibility criteria

The question that guided the review was: "Is the consumption of ultra-processed foods (defined by the NOVA classification) associated with diseases?". To answer it, the review considered all studies that investigated the association between the consumption of ultra-processed foods (exposure) and health outcomes, including indicators related to obesity (body mass index – BMI, waist circumference and body fat), metabolic risk markers (such as blood pressure, lipid profile and blood glucose), diabetes, cardiovascular diseases, cancer, among others. The studies should have assessed the exposure (the consumption of ultra-processed foods) based on the definition by the NOVA classification ¹. Case studies, reviews, comments, editorials, conference proceedings or theses/dissertations or restricted to people with specific diseases were excluded.

Search strategy

The search for indexed articles was carried out in three databases: PubMed and Web of Science, of international scope, and LILACS, covering Latin America and the Caribbean. The keywords used for the exhibition of interest were "ultra-processed" combined with "food OR product" for international databases, and "ultraprocessado OR ultraprocessado OR ultra-processed" combined with

"alimento OR produto OR food OR product" for the Lilacs database. No topic, language or publication date limits were used. The search included records published as of August 18th, 2020. Additionally, records identified through other sources, such as articles in press/published after the search were incorporated.

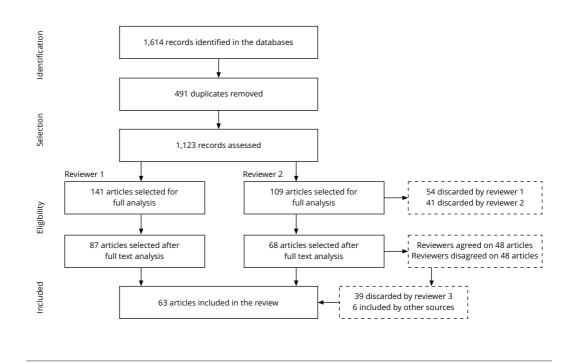
Studies selection

All titles and abstracts found in the electronic search were imported for assessment using EndNote version X9 (http://www.endnote.com/) software, with duplicate studies removed from the list. The titles and abstracts of the remaining articles were analyzed by two independent reviewers, considering the inclusion criteria mentioned above. Articles with insufficient information in the abstract were not discarded. After the selection by titles and abstracts, the same reviewers independently read the full texts to select the studies to be included. In the case of discordant selection, the studies were evaluated by a third reviewer.

Data-mapping process

Relevant data were extracted from each selected article, with the aid of a standardized spreadsheet, including the author and year of publication, study design, participants, operational definition of exposure and outcome, control variables and results. The studies were organized into three large groups according to the outcomes found and presented, within each outcome group, for adults, pregnant women, children/adolescents (in that order) and, within each population subgroup, by type of study design – randomized clinical trial, cohort, case-control, cross-sectional with national representativeness and local cross-sectional (in that order).

Methodological quality assessment


The selected articles were analyzed by the same reviewers, independently, in terms of methodological quality using the tool from the National Institutes of Health (NIH) 18. This tool provides 14 questions (specific to each study design) to be answered by the reviewers in order to assist in the internal validity assessment (or risk of bias) of each study (Supplementary Material: http://cadernos.ensp.fiocruz. br/static//arquivo/suppl-e00323020-ingles_2541.pdf). The questions are focused on key concepts related to the study design, the research question, eligibility, sample selection and recruitment, the validity of the exposure and outcome measures, losses to follow-up and statistical analysis. Reviewers can select "yes", "no" or "cannot be determined/not reported/not applicable" in response to each question. The instrument does not provide an objective rating scale, but, for each item in which "no" was selected, reviewers are instructed to consider the risk of bias that could be introduced by this failure. For each question, there is a detailed instruction for its assessment, which has also been developed by the NIH. It was considered important for the methodological study quality, for example, the purpose clarity, the definition and appropriate description of the exposure and the outcomes, the loss of follow-up below 20% (in the case of the cohort studies) and the statistical control for at least age, sex and socioeconomic characteristics. From the questions, the reviewers attributed to each article a high, mean or low assessment of its methodological quality. Disagreements were resolved by consensus or by the third reviewer.

Results

The selection process was described in Figure 1. The search originated 1,614 articles. After removing duplicates and sorting by title and abstract, 141 articles were selected for review of the full text by reviewer 1 and 109 by reviewer 2. With the complete reading, 48 articles were selected by both reviewers and 48 conflicting articles were evaluated by the third reviewer, including 9 more articles. It was added 6 articles in press/published after the search, totaling 63 articles included and evaluated qualitatively.

Figure 1

Flowchart of study selection.

The studies evaluated the association between the consumption of ultra-processed foods and weight gain (n = 3), BMI (n = 17), overweight/obesity (n = 25), waist circumference (n = 9), body fat (n = 4), hypertension/blood pressure levels (n = 4), serum lipid levels (n = 4), blood glucose (n = 1), serum levels of C-reactive protein (n = 1), subclinical atherosclerosis (n = 1), short telomeres (n = 1), urinary levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG) (n = 1), metabolic syndrome (n = 4), gestational diabetes (n = 1), cardiovascular disease (n = 1), type 2 diabetes (n = 2), breast cancer (n = 2), prostate cancer (n = 2), colorectal cancer (n = 1), wheezing/asthma (n = 3), mortality from cardiovascular diseases (n = 2), all-cause mortality (n = 4), depression (n = 3), frailty syndrome (n = 1) and gastrointestinal diseases (n = 2). The studies were carried out in Brazil (n = 24), France (n = 9), Spain (n = 9), United States (n = 6), United Kingdom (n = 4), Canada (n = 4), Australia (n = 1), Norway (n = 1), Lebanon (n = 1) and Iran (n = 1). Three ecological studies evaluated data from 19 European countries, 13 Latin American countries and 80 countries from different regions, respectively. Author and year of publication, design, participants (covering sample size), operational definition of exposure and outcome, control variables and main results of these studies are described in separate tables according to the type of health outcome.

Obesity and obesity-related indicators and metabolic risk markers

Adults

Box 1 describes the studies' main characteristics that assessed the association of the consumption of ultra-processed foods with the indicators related to obesity and metabolic risk markers in adults.

Box 1

Characteristics of studies that assessed the association between the consumption of ultra-processed foods and obesity and obesity-related indicators and metabolic risk markers (hypertension, serum C-reactive protein and metabolic syndrome) in adults.

AUTHOR	STUDY DESIGN	STUDY	EXPOSURE	HEALTH	CONTROL	KEY FINDINGS	QUALITY
(YEAR)		PARTICIPANTS		OUTCOME	VARIABLES		
Hall et al. 19	Randomized	Adults from the	Ad libitum offer	Daily energy	The ultra-processed	When exposed	High
(2019)	clinical trial	United States	for two weeks of	intake and	and non-ultra-	to an ultra-	
		aged between 18	diets made with,	change in	processed diets	processed diet,	
		to 50 years old in	on average, 83% of	weight and	were paired	participants	
		2018 (n = 20) (NIH	calories from ultra-	body fat in two	for calories,	consumed, on	
		Study).	processed foods or	weeks.	energy density,	average, 508 ±	
			diets without ultra-		macronutrients,	106Kcal more	
			processed foods.		sugar, sodium and	per day than	
					fiber.	when exposed	
						to diets without	
						ultra-processed	
						foods. At the end	
						of two weeks,	
						the participants	
						increased 0.9kg	
						± 0.3kg in weight	
						and 0.4kg ±	
						0.1kg in body	
						fat consuming	
						the ultra-	
						processed diet	
						and decreased	
						0.9kg ± 0.3kg in	
						weight and 0.3kg	
						± 0.1kg of body	
						fat consuming	
						the non-ultra-	
						processed diet	
						(p-value < 0.001).	

Box 1 (continued)

AUTHOR	STUDY DESIGN	STUDY	EXPOSURE	HEALTH	CONTROL	KEY FINDINGS	QUALITY
(YEAR)		PARTICIPANTS		OUTCOME	VARIABLES		•
Canhada et al.	Cohort	Brazilian adults	Participation of	Incidence of	Age, sex, race/	Participants	High
²⁰ (2019)		aged 35 years	ultra-processed	overweight	color, family	in the largest	
		old or older	foods in the food's	and obesity	income, education,	quartile of	
		with a mean	total energy.	and weight	physical activity and	consumption of	
	follow-up of 3.8		gain and waist	smoking status.	ultra-processed		
		years between		circumference.		foods had a	
		2008/2010-				higher risk of	
		2012/2014 (n =				weight gain	
		11,827) (ELSA-				(adjusted RR =	
		Brasil).				1.27; 95%Cl: 1.07;	
						1.50) and waist	
						circumference	
						(adjusted RR =	
						1.33; 95%Cl: 1.12;	
						1.58), excessive	
						and higher	
						incidence of	
						overweight and	
						obesity (adjusted	
						RR = 1.20; 95%Cl	
						1.03; 1.40) when	
						compared to	
						those in the	
						lowest quartile.	
Mendonça	Cohort	Spanish middle-	Consumption of	Incidence of	Age, sex, education,	Participants	High
et al. ²¹ (2016)		aged adults with	ultra-processed	overweight and	marital status,	in the largest	
		a mean follow-	foods servings/day.	obesity.	physical activity,	quartile of	
		up of 8.9 years			smoking status,	consumption of	
		between 1999-			hours watching	ultra-processed	
		2012 (n = 8,541)			television, nap	foods had a	
		(The Sun).			times, BMI at	higher risk of	
					baseline, following	overweight/	
					a special diet at	obesity (adjusted	
					baseline, snacking	HR = 1.26; 95%CI:	
					between meals	1.10; 1.45) when	
					and consumption	compared to	
					of fruits and	those in the	
					vegetables.	lowest quartile.	

AUTHOR	STUDY DESIGN	STUDY	EXPOSURE	HEALTH	CONTROL	KEY FINDINGS	QUALITY
(YEAR)		PARTICIPANTS		OUTCOME	VARIABLES		
Rauber et al. 22	Cohort	British adults	Participation of	Incidence of	Sex, socioeconomic	Participants	High
(2020)		aged between	ultra-processed	obesity and	deprivation index,	in the highest	
		40 to 69 years	foods in the food's	abdominal	physical activity,	quartile of	
		old with a mean	total energy.		smoking status and	consumption of	
		follow-up of 5		of BMI, waist	hours of sleep.	ultra-processed	
		years between		circumference		foods had a	
		2006-2019 (n		and body fat.		higher risk of	
		= 22,659) (UK				obesity (adjusted	
		Biobank).				HR = 1.58; 95%Cl:	
						1.32; 1.90)	
						and high waist	
						circumference	
						(adjusted HR	
						= 1.38; 95%CI:	
						1.21; 1.57) and	
						to experience	
						an increase of	
						≥ 5% in BMI	
						(adjusted HR =	
						1.30; 95%Cl: 1.19;	
						1.42), in waist	
						circumference	
						(adjusted HR	
						= 1.30; 95%CI:	
						1.21; 1.40) and in	
						the percentage	
						of body fat	
						(adjusted HR	
						= 1.14; 95%CI:	
						1.04; 1.26) when	
						compared to	
						those with	
						the lowest	
						consumption	
						quartile.	
						quartile.	

Box 1 (continued)

AUTHOR	STUDY DESIGN	STUDY	EXPOSURE	HEALTH	CONTROL	KEY FINDINGS	QUALITY
(YEAR)		PARTICIPANTS		OUTCOME	VARIABLES		
Beslay et al. 23	Cohort	French adults	Participation of	Incidence of	Sex, age, marital	The consumption	High
(2020)		aged 18 years	ultra-processed	overweight and	status, education,	of ultra-	
		old or over and a	foods in the total	obesity and BMI	physical activity,	processed foods	
		mean follow-up	of food grams.	gain.	smoking status,	was positively	
		of 4.1 years (n =			number of dietary	associated with	
		110,260)			records, alcohol	a higher risk	
					intake, energy	of overweight	
					intake.	(adjusted HR	
						associated with a	
						10% increase in	
						the consumption	
						of ultra-	
						processed foods	
						= 1.11; 95%Cl:	
						1.08; 1.14),	
						obesity (adjusted	
						HR associated	
						with a 10%	
						increase in the	
						consumption of	
						ultra-processed	
						foods = 1.09;	
						95%Cl: 1.05;	
						1.13) and BMI	
						gain (adjusted B	
						associated with a	
						10% increase in	
						the consumption	
						of ultra-	
						processed foods:	
						0.02; 95%CI: 0.01;	
						0.02)	
Adams &	Cross-sectional	British adults	Participation of	BMI, overweight	Age, sex, social	The consumption	Mean
White ²⁴ (2015)		aged 18 years old	ultra-processed	and obesity.	class and alcohol	of ultra-	
		or older in 2008-	foods in the food's		consumption.	processed	
		2012 (n = 2,174).	total energy.			foods was not	
						significantly	
						associated with	
						the outcomes.	

AUTHOR	STUDY DESIGN	STUDY	EXPOSURE	HEALTH	CONTROL	KEY FINDINGS	QUALITY
(YEAR)		PARTICIPANTS		OUTCOME	VARIABLES		
Louzada et al.	Cross-sectional	Brazilians aged 10	Participation of	BMI, overweight	Age, sex, race/color,	Participants	Mean
²⁵ (2015)		years old or older	ultra-processed	and obesity.	income, education,	in the largest	
		in 2008/2009 (n =	foods in the food's		region, urbanity,	quintile of	
		32,898).	total energy.		physical activity,	consumption of	
					smoking status,	ultra-processed	
					intake of fruits,	foods had a	
					vegetables and	higher mean	
					beans.	BMI (adjusted	
						coefficient: 0.94;	
						95%CI: 0.42; 1.42)	
						and a greater	
						chance of being	
						overweight	
						(adjusted OR	
						= 1.26; 95%CI:	
						0.95; 1.69) and	
						obesity (adjusted	
						OR = 1.98; 95%CI:	
						1.26; 3.12) when	
						compared to	
						those in the	
						lowest quintile.	

Box 1 (continued)

AUTHOR	STUDY DESIGN	STUDY	EXPOSURE	HEALTH	CONTROL	KEY FINDINGS	QUALITY
(YEAR)		PARTICIPANTS		OUTCOME	VARIABLES		
Juul et al. ²⁶	Cross-sectional	Adults from the	Participation of	BMI, waist	Age, sex, ethnicity,	Participants	Mean
(2018)		United States	ultra-processed	circumference,	socioeconomic	in the largest	
		aged between 20	foods in the food's	overweight and	status, education,	quintile of	
		to 64 years old in	total energy.	obesity.	marital status,	consumption of	
		2005-2014 (n =			physical activity and	ultra-processed	
		15,977).			smoking status.	foods had a	
						higher mean	
						BMI (adjusted	
						coefficient: 1.61;	
						95%CI: 1.11;	
						2.10) and waist	
						circumference	
						(adjusted	
						coefficient: 4.07;	
						95%CI: 2.94;	
						5.19), greater	
						chance of	
						having obesity	
						(adjusted OR =	
						1.53; 95%Cl 1.29;	
						1.81), overweight	
						(adjusted OR	
						= 1.48; 95%Cl:	
						1.25; 1.76) and	
						abdominal	
						obesity (adjusted	
						OR = 1.62; 95%CI:	
						1.39; 1.89) when	
						compared to	
						those in the	
						lowest quintile.	

AUTHOR	STUDY DESIGN	STUDY	EXPOSURE	HEALTH	CONTROL	KEY FINDINGS	QUALITY
(YEAR)		PARTICIPANTS		OUTCOME	VARIABLES		
Machado et al.	Cross-sectional	Australian adults	Participation of	BMI, waist	Age, sex, income,	Participants	Mean
²⁷ (2020)		aged 20 years old	ultra-processed	circumference,	education, area	in the largest	
		or older between	foods in the food's	obesity and	of residence,	quintile of	
		2011-2012 (n =	total energy.	abdominal	country of birth,	consumption of	
		7,411).		obesity.	physical activity and	ultra-processed	
					smoking status.	foods had a	
						higher mean	
						BMI (adjusted	
						coefficient: 0.97;	
						95%CI: 0.42;	
						1.51), and waist	
						circumference	
						(adjusted	
						coefficient:	
						1.92cm; 95%Cl:	
						0.57; 3.27) and	
						greater chance	
						of having obesity	
						(adjusted OR	
						= 1.61; 95%Cl:	
						1.27; 2.04) and	
						abdominal	
						obesity (adjusted	
						OR = 1.38; 95%CI:	
						1.10; 1.72) when	
						compared to	
						those in the	
						lowest quintile.	

Box 1 (continued)

AUTHOR	STUDY DESIGN	STUDY	EXPOSURE	HEALTH	CONTROL	KEY FINDINGS	QUALITY
(YEAR)		PARTICIPANTS		OUTCOME	VARIABLES		L
Rauber et al. 28	Cross-sectional	British adults	Participation of	BMI, waist	Age, sex, ethnicity,	Participants	Mean
(2020)		aged 19 years old	ultra-processed	circumference,	region, occupation,	in the largest	
		or older in 2008-	foods in the food's	obesity and	physical activity,	quartile of	
		2016 (n = 6,143).	total energy.	abdominal	smoking status,	consumption of	
				obesity.	hours of sleep, year	ultra-processed	
				-	of research and	foods had a	
					whether they were	higher mean	
					on a diet for weight	BMI (adjusted	
					loss.	coefficient: 1.66;	
						95%Cl: 0.96;	
						2.36) and waist	
						circumference	
						(adjusted	
						coefficient: 3.56;	
						95%Cl: 1.79;	
						5.33), and a	
						greater chance	
						of having obesity	
						(adjusted O =:	
						1.90; 95%Cl:	
						1.39; 2.61) when	
						compared to	
						those in the	
						lowest quartile.	
Nardocci et al.	Cross-sectional	Canadian adults	Participation of	Overweight and	Age, sex, income,	Participants	Low
²⁹ (2018)		aged 18 years old	ultra-processed	obesity.	education,	in the largest	
		or older in 2004	foods in the food's		immigration, area	quintile of	
		(n = 19,363).	total energy.		of residence,	consumption of	
					physical activity,	ultra-processed	
					smoking status,	foods were more	
					group's total energy	likely to have	
					intake and type of	obesity (adjusted	
					weight and height	OR = 1.32; 95%CI:	
					measurement (self-	1.05; 1.57) when	
					reported or directly	compared to	
					measured).	those in the	
						lowest quintile.	
Seale et al. ³⁰	Cross-sectional	Canadian adults	Number of	BMI.	Age, sex, income	The consumption	Low
(2020)		aged 18 years	different types of		and region.	of ultra-	
		old or older in	ultra-processed			processed foods	
		2014/2015 (n =	foods consumed in			was positively	
		10,942).	the previous seven			associated with	
			days.			BMI (adjusted	
						coefficient: 0.04;	
						95%Cl: 0.02;	
						0.07).	

AUTHOR	STUDY DESIGN	STUDY	EXPOSURE	HEALTH	CONTROL	KEY FINDINGS	QUALITY
(YEAR)		PARTICIPANTS		OUTCOME	VARIABLES		
Julia et al. ³¹	Cross-sectional	French adults	Participation of	Overweight and	Age, sex, income,	Higher	Mean
(2018)		aged 18 years old	ultra-processed	obesity.	education, marital	consumption of	
		or older between	foods in the total		status, smoking	ultra-processed	
		2009-2014 (n =	of food grams.		status, BMI and	foods was	
		74,470).			energy intake.	significantly	
						associated with	
						overweight and	
						obesity (p-value <	
						0.0001).	
Silva et al. ³²	Cross-sectional	Brazilian adults	Participation of	BMI, waist	Age, sex, race/	Participants	Mean
(2018)		aged between 35	ultra-processed	circumference,	color, family	in the largest	
		and 74 years in	foods in the food's	overweight,	income per capita,	quartile of	
		2008-2010 (n =	total energy.	obesity,	physical activity,	consumption of	
		8,977).		high waist	smoking status,	ultra-processed	
				circumference	hypertension,	foods had a	
				and significantly	diabetes,	higher mean	
				high waist	consumption of	BMI (adjusted	
				circumference.	fresh and minimally	coefficient: 0.64;	
					processed foods	95%Cl: 0.33;	
					added to culinary	0.95) and waist	
					ingredients and	circumference	
					energy intake.	(adjusted	
						coefficient:	
						0.95; 95%Cl:	
						0.17; 1.74) and	
						greater chance	
						of overweight	
						(adjusted OR =	
						1.32; 95%Cl: 1.15;	
						1.53), obesity	
						(adjusted OR:	
						1.43, 95%Cl:	
						1.20; 1.72)	
						and high waist	
						circumference	
						(OR = 1.21;	
						95%Cl: 1.01; 1.46)	
						when compared	
						to those in the	
						lowest quartile.	

Box 1 (continued)

AUTHOR	STUDY DESIGN	STUDY	EXPOSURE	HEALTH	CONTROL	KEY FINDINGS	QUALITY
(YEAR)		PARTICIPANTS		OUTCOME	VARIABLES		
Djupegot et al.	Cross-sectional	Norwegian	Frequency score of	Overweight and	Age, sex, education,	Overweight/	Low
³³ (2017)		parents of 2-year-	the consumption	obesity.	shortage of time	obese people	
		old children in	of ultra-processed		and number of	were more likely	
		2014/2015 (n =	foods.		children in the	to have a high	
		497).			household.	consumption of	
						ultra-processed	
						foods at dinner	
						(adjusted OR	
						= 1.54; 95%Cl:	
						1.04; 2.30) when	
						compared to	
						those with	
						normal weight.	
Pan-American	Ecological	Latin American	Total volume, in	BMI trajectories.	Population size,	The increase in	Mean
Health		countries	kg/per capita,		urbanization and	the per capita	
Organization		between 2000-	of sales of ultra-		gross national	volume of	
³⁴ (2015)		2013 (n = 13).	processed foods.		income.	sales of ultra-	
						processed foods	
						was significantly	
						and positively	
						associated with	
						the average	
						increase in the	
						countries' BMI	
						(p-value < 0.001).	
Vandevijvere	Ecological	Countries of the	Total volume, in	BMI trajectories.	National income	Increases in the	Mean
et al. ³⁵ (2019)		Euromonitor food	kg/per capita,		per capita,	per capita volume	
		sales database	of sales of ultra-		education,	of sales of ultra-	
		between 2002-	processed foods.		urbanization,	processed foods	
		2014 (n = 80).			average	were significantly	
					consumption	and positively	
					of fruits and	associated	
					vegetables in 2005,	with the BMI	
					GINI index and,	trajectories in	
					indirectly, physical	the population	
					activity.	(p-value < 0.001).	

AUTHOR	STUDY DESIGN	STUDY	EXPOSURE	HEALTH	CONTROL	KEY FINDINGS	QUALITY
(YEAR)		PARTICIPANTS		OUTCOME	VARIABLES		
Monteiro et al.	Ecological	European	Participation of	Prevalence	GDP per capita,	The national	Low
³⁶ (2018)		countries	ultra-processed	of obesity in	GDP ² per capita,	household	
		between 1991-	foods in the total	adults.	years of difference	availability of	
		2008 (n =19).	energy available		between the	ultra-processed	
			for consumption		estimates of obesity	foods was	
			in households		and availability of	positive and	
			(national per		ultra-processed	significantly	
			capita).		foods, obesity	associated with	
			-		measurement	the national	
					method (self-	prevalence of	
					reported or direct	obesity among	
					measurement),	adults. The	
					prevalence of	increase of a	
					physical inactivity	percentage in	
					and smoking status.	the availability	
						of ultra-	
						processed foods	
						at home was	
						associated with	
						an increase of	
						0.25 percentage	
						points in the	
						prevalence of	
						obesity.	
Mendonça et	Cohort	Spanish middle-	Consumption of	Hypertension	Age, sex, physical	Participants in	High
al. ³⁷ (2017)		aged adults	ultra-processed	incidence.	activity, smoking	the highest tertile	
		with an average	foods servings/day.		status, time	of consumption	
		follow-up of 9.1			watching TV, use	of ultra-	
		years between			of analgesics,	processed foods	
		1999-2012 (n =			family history	had a higher risk	
		14,790) (The Sun).			of hypertension	of hypertension	
					and hypercho-	(adjusted HR	
					lesterolemia,	= 1.21; 95%Cl:	
					following a	1.06; 1.37) when	
					special baseline	compared to	
					diet, baseline	those in the	
					BMI, energy	lowest tertile.	
					intake, alcohol		
					consumption,		
					oil and fruit and		
					vegetable intake.		

Box 1 (continued)

AUTHOR	STUDY DESIGN	STUDY	EXPOSURE	HEALTH	CONTROL	KEY FINDINGS	QUALITY
(YEAR)		PARTICIPANTS		OUTCOME	VARIABLES		
Martínez	Cross-sectional	American adults	Participation of	Metabolic	Age, sex, race/	Participants	Mean
Steele et al. 38		aged 20 years old	ultra-processed	syndrome.	ethnicity,	in the largest	
(2019)		or older between	foods in the food's		socioeconomic	quintile of	
		2009-2014 (n =	total energy.		status, education,	consumption of	
		6,385).			physical activity and	ultra-processed	
					smoking status.	foods had a	
						higher prevalence	
						of metabolic	
						syndrome	
						(adjusted PR	
						= 1.28; 95%CI:	
						1.09; 1.50) when	
						compared to	
						those in the	
						lowest quintile.	
Lavigne-	Cross-sectional	Canadian	Participation of	Metabolic	Age, sex, area of	Participants	Low
Robichaud et		indigenous	ultra-processed	syndrome.	residence, smoking	in the largest	
al. ³⁸ (2018)		people aged 18	foods in the food's		status, energy	quintile of	
		years old or older	total energy,		intake and alcohol	consumption of	
		(n = 811).	sodium and added		consumption.	ultra-processed	
			sugar.			foods were	
						more likely to	
						have metabolic	
						syndrome	
						(adjusted OR	
						= 1.90; 95%CI:	
						1.14; 3.17) when	
						compared to	
						those in the	
						lowest quintile.	
Nasreddine et	Cross-sectional	Lebanese adults	Participation of	Metabolic	Age, sex, income,	The consumption	Low
al. ⁴⁰ (2018)		aged 18 years	ultra-processed	syndrome.	education, marital	of ultra-	
		old or older (n =	foods in the food's		status, area of	processed	
		302).	total energy.		residence, physical	foods was not	
					activity, smoking	significantly	
					status, BMI and	associated	
					energy intake.	with metabolic	
						syndrome.	

AUTHOR	STUDY DESIGN	STUDY	EXPOSURE	HEALTH	CONTROL	KEY FINDINGS	QUALITY
(YEAR)		PARTICIPANTS		OUTCOME	VARIABLES		201111
Lopes et al. 41	Cross-sectional	Brazilian adults	Participation of	Serum levels	Age, race/color,	Women in the	Mean
(2019)		aged between 35	ultra-processed	of C-reactive	education, physical	highest tertile of	
		to 74 years old in	foods in the food's	protein.	activity, smoking	consumption of	
		2008-2010 (n =	total energy.		status and BMI.	ultra-processed	
		8,468).	6,5			foods had higher	
						serum levels	
						of C-reactive	
						protein (adjusted	
						coefficient: 1.14;	
						95%CI: 1.04; 1.24)	
						when compared	
						to those in the	
						lowest tertile	
						in the model	
						adjusted for	
						age, race/color,	
						education,	
						physical activity,	
						smoking status.	
						The association	
						lost significance	
						when adjusted	
						in the model	
						additionally	
						adjusted for	
						BMI (adjusted	
						coefficient:	
						1.00; 95%CI:	
						0.92; 1.08). No	
						association was	
						found between	
						men.	
Montero-	Cross-sectional	Spanish adult	Grams of ultra-	Coronary	Age, marital status,	Men in the	Mean
Salazar et al. 42		men aged	processed food.	calcium score.	education, smoking	highest quartile	mean
(2020)		between 40 to	processed lood.	calcium score.	status, physical	of consumption	
(2020)		60 years old (n =			activity, sleep	of ultra-	
		1,876)			duration, serum	processed foods	
		1,070)			cholesterol, blood	had a greater	
					pressure, diabetes,	chance of high	
					BMI, alcohol	coronary calcium	
					intake, fiber intake,	score (≥ 100)	
					cholesterol and	(adjusted OR	
					total energy.	= 2.0; 95%CI:	
					l cottai chergy.	1.26; 3.16) when	
						compared to	
						those in the first	
						quartile.	

Box 1 (continued)

AUTHOR	STUDY DESIGN	STUDY	EXPOSURE	HEALTH	CONTROL	KEY FINDINGS	QUALITY
(YEAR)		PARTICIPANTS		OUTCOME	VARIABLES		
Alonso-	Cross-sectional	Spanish adults	Ultra-processed	Short	Age, sex, education,	Participants	Low
Pedrero et al.		aged between 57	food portions.	telomeres.	smoking status,	in the largest	
⁴³ (2020)		and 91 years old			physical activity,	quartile of	
		(n = 886)			television time,	consumption of	
					family history	ultra-processed	
					of diabetes and	foods were more	
					cardiovascular	likely to have	
					diseases,	short telomeres	
					prevalence of	(adjusted OR	
					cancer, diabetes	= 1.82; 95%CI:	
					and dyslipidemia,	1.05; 3.22) when	
					BMI, energy intake.	compared to	
						those in the	
						lowest quartile.	

95%CI: 95% confidence interval; BMI: body mass index; GDP: Gross Domestic Product; HR: harzard ratio; OR: odds ratio; PR: prevalence ratio; RR: relative risk.

a) Obesity and obesity-related indicators

In adults, the association between the consumption of ultra-processed foods and obesity or obesityrelated indicators were examined in an randomized clinical trial (high methodological quality) ¹⁹, four cohort studies (high quality) ^{20,21,22,23}, seven cross-sectional studies with national representativeness (five with mean ^{24,25,26,27,28} and two with low quality ^{29,30}), three local cross-sectional studies (two with mean ^{31,32} and one with low quality ³³) and three ecological studies (two with mean ^{34,35} and one with low quality ³⁶).

After adjusting for confounders, positive associations between the consumption of ultra-processed foods and overweight/obesity or the BMI in adults were demonstrated in the four cohort studies (NutriNet Santé, ELSA-Brasil, The Sun and UK Biobank) ^{20,21,22,23}, in nine out of the ten cross-sectional studies ^{25,26,27,28,29,30,31,32,33} (five of which were representative samples from Brazil, Canada, United States, Australia and the United Kingdom ^{25,26,27,28,29}) and in the three ecological studies (which assessed exposure to the consumption of ultra-processed foods based on purchases or sales of these foods in different countries) ^{34,35,36}. The UK Biobank cohort study demonstrated a direct association between the consumption of ultra-processed foods and the percentage of body fat assessed by bioimpedance ²².

Crossover-type randomized clinical trial in adults conducted by the NIH showed an association between the exposure to a diet based on ultra-processed foods and obesity indicators. Its results showed that, when exposed to ad libitum diets with more than 80% of calories from ultra-processed foods, participants consumed, on average, 508Kcal/day more than when exposed to diets without ultra-processed foods and that, at the end of two weeks, participants increased 0.9kg in weight and 0.4kg in body fat by consuming the ultra-processed diet and decreased 0.9kg in weight and 0.3kg in body fat by consuming the non-ultra-processed diet. The ultra-processed and non-ultra-processed diets offered to the participants were matched in terms of the amount of energy, macronutrients, sugar, sodium and fiber ¹⁹.

After adjusting for confounders, there was a positive association between the consumption of ultra-processed foods in adults and the waist circumference in all studies in which this outcome was

assessed, including two cohort studies (ELSA-Brasil and UK Biobank) ^{20,22} and three cross-sectional studies with national representativeness (United States , United Kingdom and Australia) ^{26,27,28} and a local cross-sectional ³².

b) Metabolic risk markers

In adults, the association between the consumption of ultra-processed foods and hypertension was examined in a cohort study (high methodological quality) ³⁷, metabolic syndrome in three cross-sectional studies (one with mean ³⁸ and two with low ^{39,40}), serum levels of C-reactive protein under cross-sectional study (mean quality) ⁴¹, subclinical atherosclerosis in a cross-sectional study (mean quality) ⁴² and telomere length in a cross-sectional study (mean quality) ⁴³.

After adjusting for confounders, The Sun cohort study found, in Spanish middle-aged adults, a positive association between the consumption of ultra-processed foods and the risk of developing hypertension ³⁷.

After adjusting for confounders, a positive association between the consumption of ultra-processed foods and metabolic syndrome in adults was found in two out of three studies that assessed this outcome, those were the cross-sectional study with a sample from the *National Health and Nutrition Examination Survey* (NHANES) ³⁸ and one local study with Canadian indigenous people ³⁹.

A cross-sectional study with middle-aged Brazilian adults showed that, among women, after adjusting for sociodemographic characteristics, smoking status and physical activity, the consumption of ultra-processed foods was associated with higher levels of C-reactive protein; however, this association lost statistical significance with the inclusion of BMI in the model. Among men, there was no association between ingestion of ultra-processed foods and C-reactive protein ⁴¹. A cross-sectional study with Spanish adult men demonstrated, after adjusting for confounders, an association between the consumption of ultra-processed foods and the coronary calcium score, which assesses subclinical atherosclerosis ⁴². A cross-sectional study with Spanish adults demonstrated, after adjusting for confounders, an association between the consumption of ultra-processed foods and the coronary calcium score, which assesses subclinical atherosclerosis ⁴². A cross-sectional study with Spanish adults demonstrated, after adjusting for confounders, an association between the consumption of ultra-processed foods and the coronary calcium score, which assesses subclinical atherosclerosis ⁴². A cross-sectional study with Spanish adults demonstrated, after adjusting for confounders, an association between the consumption of ultra-processed foods and short telomeres, an aging biomarker ⁴³.

Pregnant woman

Box 2 describes the studies' main characteristics that assessed the association between the consumption of ultra-processed foods and the indicators related to obesity and metabolic risk markers in pregnant women.

a) Obesity and obesity-related indicators

In pregnant women, the association between the consumption of ultra-processed food and the obesity-related indicators was examined in two cohort studies (one with high methodological quality ⁴⁴ and the other with mean ⁴⁵) and two cross-sectional studies (both with low quality ^{46,47}). After adjusting for confounders, the cohort study demonstrated, in pregnant women from the United States, that the participation of ultra-processed foods in the diet was associated with an increase in gestational weight gain (and higher values of thigh and subscapular folds and percentage of body adiposity of the newborn) ⁴⁴. A cohort study with Brazilian pregnant women demonstrated, after adjusting for confounders, that the consumption of ultra-processed foods in the 2nd and 3rd trimesters of pregnancy was positively associated with the average weight gain in the same period ⁴⁵. The two cross-sectional studies, both conducted in a medium-sized Brazilian city, demonstrate, after adjusting for confounders, a positive association of the consumption of ultra-processed foods with overweight/obesity in pregnant women ^{46,47}.

Box 2

Characteristics of studies that assessed the association between the consumption of ultra-processed foods and obesity and obesity-related indicators and metabolic risk markers (gestational diabetes) in pregnant women.

AUTHOR	STUDY DESIGN	STUDY	EXPOSURE	HEALTH	CONTROL	KEY FINDINGS	QUALITY
(YEAR)		PARTICIPANTS		OUTCOME	VARIABLES		L
Rohatgi et al.	Cohort	Pregnant women	Participation of	Maternal	In maternal	The consumption	High
⁴⁴ (2017)		from the United	ultra-processed	gestational	outcomes:	of ultra-	C
		States and their	foods in the food's	-	age, ethnicity,	processed foods	
		newborns in	total energy.	thigh skin folds,	socioeconomic	was positively	
		2013/2014 (n		subscapular	status, physical	associated	
		= 45) (St. Louis		skin folds and	activity, weight,	with maternal	
		Women's Health		newborn's body	average energy	gestational	
		Center Study).		fat.	intake/day and	weight (adjusted	
					average fat	coefficient	
					intake/day. In	for the 1%	
					the newborn's	increase in the	
					outcomes: maternal	consumption of	
					variables and	ultra-processed	
					gestational age at	foods: 1.3;	
					which neonatal	95%Cl: 0.3; 2.4)	
					measurements	and thigh skin	
					were conducted.	fold (adjusted	
						coefficient for a	
						1% increase in	
						the consumption	
						of ultra-	
						processed foods:	
						0.22; 95%CI:	
						0.005; 0.400),	
						subscapular skin	
						fold (adjusted	
						coefficient for a	
						1% increase in	
						the consumption	
						of ultra-	
						processed foods:	
						0.14; 95%CI: 0.02;	
						0.30) and body	
						fat percentage	
						(adjusted	
						coefficient for the	
						1% increase in	
						the consumption	
						of ultra-	
						processed foods:	
						0.62; 95%CI:	
						0.02, 95%Cl. 0.04; 1.20) of the	
						newborn.	

AUTHOR	STUDY DESIGN	STUDY	EXPOSURE	HEALTH	CONTROL	KEY FINDINGS	QUALITY
(YEAR)		PARTICIPANTS		OUTCOME	VARIABLES		2011-111
Gomes et al.	Cohort	Brazilian	Participation of	Gestational	Sex, age, education,	The consumption	Mean
⁴⁵ (2020)		pregnant women	ultra-processed	weight gain.	socioeconomic	of ultra-	
		aged 18 years	foods in the food's		classification, work	processed foods	
		old or over in	total energy.		situation outside	in the 2 nd and	
		2012/2013 (n =			the home, living	3 rd trimesters	
		259)			with a partner,	of gestation	
					parity, race/color	was positively	
					and pre-gestational	associated with	
					BMI.	the average	
						weight gain	
						in the same	
						period (adjusted	
						coefficient for a	
						1% increase in	
						the consumption	
						of ultra-	
						processed foods:	
						4.17; 95%CI: 0.55;	
						7.79).	
Crivellenti et	Cross-sectional	Brazilian	Participation of	Gestational	Age, education,	Participants in	Low
al. 46 (2019)	Closs-sectional	pregnant women	ultra-processed	overweight and	physical activity,	the highest tertile	LOW
al. ¹⁰ (2015)		aged 20 years	foods in the food's	obesity.	smoking status,	of consumption	
		old or older in		obesity.	family history of	of ultra-	
		2011/2012 (n =	total energy.		diabetes mellitus,	processed foods	
		754).			gestational diabetes	were more likely	
		7 54).			mellitus, gestational	to be overweight	
					week, parity, BMI	(adjusted OR	
						-	
					and energy intake.	= 1.72; 95%Cl:	
						1.10; 2.94) and	
						obese (adjusted	
						OR = 5.24; 95%CI:	
						2.80; 9.80) when	
						compared to	
						those in the	
C						lower tertile.	
Sartorelli et	Cross-sectional	Brazilian	Participation of	Overweight,	Age, education,	Participants	Low
al. ⁴⁷ (2019)		pregnant women	ultra-processed	obesity and	physical activity,	in the highest	
		aged 20 years	foods in the food's	gestational	smoking status,	tertile of	
		old or older in	total energy.	diabetes	family history	consumption of	
		2011/2012 (n =		mellitus.	of diabetes	ultra-processed	
		785).			mellitus, history of	foods were more	
					gestational diabetes	likely to present	
					mellitus, gestational	gestational	
					week, parity, BMI	obesity (adjusted	
					and energy intake.	OR = 3.06; 95%CI:	
						1.27; 3.37) when	
						compared to	
						those in the first	
						tertile.	

b) Metabolic risk markers

In pregnant women, a small cross-sectional study (low quality) carried out in a medium-sized city in Brazil assessed the association between the consumption of ultra-processed foods and gestational diabetes and found no significant results ⁴⁷.

Children and adolescents

Box 3 describes the studies' main characteristics that assessed the association of the consumption of ultra-processed foods with the indicators related to obesity and metabolic risk markers in children and adolescents.

a) Obesity and obesity-related indicators

In children and adolescents, the association between the consumption of ultra-processed foods and obesity-related indicators was examined in five cohort studies (three with high methodological quality ^{48,49,50}, one with mean ⁵¹ and one with low ⁵² – the latter making only a cross-sectional analysis at two points of the cohort), in four small local cross-sectional studies ^{53,54,55,56} (all with low quality) and in a cross-sectional study with national representativeness of the adolescent population in Brazil (mean quality) ²⁵.

After adjusting for confounders, a positive association between the consumption of ultra-processed foods and overweight/obesity or BMI's magnitude was demonstrated in the study with national representativeness of the adolescent population in Brazil ²⁵. A small cross-sectional study demonstrated, after adjusting for confounders, an association between the consumption of ultra-processed foods and excess weight in Brazilian schoolchildren ⁵⁶. A study of the Spanish birth cohort INMA (*Infancia y Medio Ambiente*) demonstrated that low intake of ultra-processed foods at 4 years old was associated with a lower z-score of BMI at 7 years old in a model adjusted for sociodemographic characteristics, but the association became "borderline" (p-value = 0,07) with the addition of the maternal BMI variable in the model ⁴⁸. A Pelotas (Rio Grande do Sul State, Brazil) birth cohort study in 2004 found an association between the increase in consumption of ultra-processed foods between 6 and 11 years old and the change in body fat content (assessed by air displacement plethysmography) in the same period ⁵⁰.

The association between the consumption of ultra-processed foods and waist circumference was demonstrated in one of the two cohorts in which this outcome was assessed. After adjusting for confounders, a 4-year study that followed a cohort of children from 3 to 4 years old of low socioeconomic status demonstrated that the intake of ultra-processed foods at preschool-age was positively associated with an increase in waist circumference values from preschool-age to school-age ⁴⁹.

b) Metabolic risk markers

In children and adolescents, studies assessed the association between the consumption of ultra-processed foods and blood pressure levels in a cohort study (high methodological quality) ⁴⁸ and two local cross-sectional studies (both with low quality) ^{53,55}, serum lipids in two cohort studies (high quality) ^{57,58} and two cross-sectional analysis nested in a cohort study (one with high quality ⁴⁸ and one with low ⁵²), blood glucose in a cohort study (high quality) ⁴⁹, metabolic syndrome in a cross-sectional study (low quality) ⁵⁹ and urinary levels of 8-OHdG in a cross-sectional study (low quality) ⁶⁰.

A study of the Spanish birth cohort INMA showed that low intake of ultra-processed foods at 4 years old was associated with lower values of diastolic blood pressure at 7 years old. No associations were found for this outcome in cross-sectional studies ⁴⁸.

Box 3

Characteristics of studies that assessed the association between the consumption of ultra-processed foods and obesity and obesity-related indicators and metabolic risk markers (high blood pressure, lipid profile/dyslipidemia and blood glucose) in children.

AUTHOR	STUDY DESIGN	STUDY	EXPOSURE	HEALTH	CONTROL	KEY FINDINGS	QUALITY
(YEAR)		PARTICIPANTS		OUTCOME	VARIABLES		
Bawaked et al.	Cohort	Spanish children	Consumption of	BMI, waist	Age, sex, maternal	Participants in	High
⁴⁸ (2020)		aged 4 to 7 years	ultra-processed	circumference,	education, maternal	the first tertile of	
		old between	foods servings/day.	blood pressure	age, pre-gestational	consumption of	
		2003-2008		and lipid profile.	maternal BMI,	ultra-processed	
		(n = 1,480)			follow-up time and	foods at 4 years	
		(INMA).			INMA sub-cohorts	old had a lower	
					and baseline	average of	
					outcomes.	standardized	
						diastolic blood	
						pressure at 7	
						years old, when	
						compared to	
						those in the last	
						tertile (adjusted	
						coefficient:	
						-0.15; 95%CI:	
						-0.29; -0.01).	
						Participants in	
						the first tertile of	
						consumption of	
						ultra-processed	
						foods had a	
						mean BMI-for-	
						age significantly	
						lower than those	
						in the last tertile	
						in the analysis	
						adjusted for the	
						child's age, sex	
						and length of	
						follow-up (-0.12;	
						95%CI: -0.23;	
						-0.02), but not	
						in the model	
						additionally	
						adjusted for	
						maternal	
						education and	
						BMI (-0.10; 95%CI:	
						-0.20; 0.01).	

Box 3 (continued)

AUTHOR	STUDY DESIGN	STUDY	EXPOSURE	HEALTH	CONTROL	KEY FINDINGS	QUALITY
(YEAR)		PARTICIPANTS		OUTCOME	VARIABLES		L
Costa et al. 49	Cohort	Brazilian children	Participation of	BMI-for-	Sex, family income,	The consumption	High
(2019)		aged 3-4 and	ultra-processed	age, waist	maternal education,	of ultra-	0
		8 years old	foods in the food's	circumference,	birth weight,	processed foods	
		between 2001/2-	total energy.	waist	breastfeeding,	at preschool-	
		2005/6 (n= 307).		circumference	screen time and	age (3-4 years)	
				due to height,	pre-gestational	was positively	
				skin folds	maternal BMI.	associated with	
				(triceps and		an increase	
				subscapular)		in waist	
				and blood		circumference	
				glucose.		(adjusted	
						coefficient for a	
						10% increase in	
						the consumption	
						of ultra-	
						processed foods:	
						0.70; 95%Cl: 0.10;	
						1.33) between	
						preschool-age	
						and school-age	
						(7-8 years).	
Costa et al. 50	Cohort	Brazilians born in	Participation of	Body fat.	Skin color, age	In the complete	High
(2020)		2004 evaluated	ultra-processed		and maternal	adjusted model,	
		between 6 (n =	foods in the total		education, birth	an increase of	
		3,128) and 11	of food grams.		weight and sex	100 grams in the	
		years old (n =			(perinatal); screen	contribution from	
		3,454) (Pelotas			time and energy	ultra-processed	
		birth cohort in			consumption/	foods to daily	
		2004).			expenditure	intake from 6 to	
					ratio (6- and	11 years old was	
					11-year follow-	associated with a	
					ups). Additional	gain of 0.14kg/m ²	
					adjustments: other	in the fat mass	
					processing groups	index in the same	
					and total energy	period. Fifty-	
					consumption (6-	eight percent of	
					and 11-year follow-	the total effect	
					ups).	of eating ultra-	
						processed foods	
						at 6 years old on	
						the change in fat	
						mass index from	
						6 to 11 years old	
						was mediated	
						by its caloric	
						content.	

AUTHOR	STUDY DESIGN	STUDY	EXPOSURE	HEALTH	CONTROL	KEY FINDINGS	QUALITY
(YEAR)		PARTICIPANTS		OUTCOME	VARIABLES		
Cunha et al. 51	Cohort	Brazilian	Participation of	Trajectories of	Age, sex, type of	The consumption	Mean
(2018)		adolescents	ultra-processed	BMI and body	school, physical	of ultra-	
		enrolled in the	foods in the food's	fat.	activity and	processed	
		first year of high	total energy.		energy intake	foods was not	
		school between			underreporting.	significantly	
		2010-2012 (n =				associated with	
		1,035) (ELANA).				the outcomes.	
Gadelha et al.	Cohort	Brazilian	Frequency score of	BMI-for-	Age, sex, parental	The consumption	Low
⁵² (2019)		adolescents from	the consumption	age, waist	education, physical	of ultra-	
		11 to 15 years	of ultra-processed	circumference,	activity, sedentary	processed	
		old between	foods.	waist	behavior and score	foods was not	
		2008/2009-		circumference	of consumption of	associated with	
		2012/2013 (n =		due to height	fresh and minimally	the assessed	
		238).		and lipid	processed foods.	outcomes.	
				concentrations			
				(total			
				cholesterol,			
				LDL, HDL and			
				triglycerides).			
De Melo et al.	Cross-sectional	Brazilian	Frequency score of	Overweight,	Age and sex.	The consumption	Low
⁵³ (2017)		adolescents aged	the consumption	high waist		of ultra-	
		between 14 and	of ultra-processed	circumference		processed	
		19 years old (n =	foods.	and high blood		foods was not	
		249).		pressure.		associated with	
						the studied	
						outcomes.	
Enes et al. 54	Cross-sectional	Brazilian	Participation of	BMI-for-age,	Sex, age, race/color,	The consumption	Low
(2019)		adolescents aged	ultra-processed	overweight,	socioeconomic	of ultra-	
		between 10 to	foods in the food's	obesity and	status and physical	processed	
		18 years old (n =	total energy.	abdominal	activity.	foods was not	
		200).		obesity.		associated with	
						the studied	
						outcomes.	
D'Avilla et al. 55	Cross-sectional	Brazilian	Energy	Excess weight	Energy intake.	Adolescents	Low
(2017)		adolescents aged	consumption of	and blood		with normal	
		between 12 and	ultra-processed	pressure level.		weight had a	
		19 years old in	foods.			higher average	
		2013/2014 (n =				consumption of	
		784).				ultra-processed	
						foods (p-vale	
						< 0.001) when	
						compared to	
						those with excess	
						weight.	

Box 3 (continued)

AUTHOR	STUDY DESIGN	STUDY	EXPOSURE	HEALTH	CONTROL	KEY FINDINGS	QUALITY
(YEAR)		PARTICIPANTS		OUTCOME	VARIABLES		
Lacerda et al.	Cross-sectional	Brazilian	Participation of	Overweight.	Age, sex, age	Overweight	Low
⁵⁶ (2020)		schoolchildren	ultra-processed		group, education,	students were	
		between 8 and	foods in the food's		guardian's marital	2.05 (95%Cl:	
		12 years old (n	total energy.		status and	1.01; 4.20) times	
		= 260)			occupation, per	more likely to	
					capita income,	have higher	
					consumption of	consumption of	
					school meals,	ultra-processed	
					consumption of	foods (last	
					food in front of the	quartile).	
					TV, screen time.		
Louzada et al.	Cross-sectional	Brazilians aged	Participation of	BMI, overweight	Age, sex, race/color,	Participants	Mean
²⁵ (2015)		10-19 years	ultra-processed	and obesity.	income, education,	in the largest	
		old or older in	foods in the food's		region, urbanity,	quintile of	
		2008/2009 (n =	total energy.		physical activity,	consumption of	
		7,534).			smoking status,	ultra-processed	
					intake of fruits,	foods had a	
					vegetables and	higher mean	
					beans.	BMI (adjusted	
						coefficient: 0.84;	
						95%Cl: 0.42; 1.42)	
						and a greater	
						chance of being	
						overweight	
						(adjusted OR	
						= 1.52; 95%Cl:	
						0.75; 3.07) and	
						obese (adjusted	
						OR = 2.74; 95%CI:	
						0.78; 9.60) when	
						compared to	
						those in the	
						lowest quintile.	

AUTHOR	STUDY DESIGN	STUDY	EXPOSURE	HEALTH	CONTROL	KEY FINDINGS	QUALITY
(YEAR)		PARTICIPANTS		OUTCOME	VARIABLES		L
Rauber et al. 57	Cohort	Brazilian children	Participation of		Sex, family income,	The consumption	High
(2015)		aged 3-4 and	ultra-processed	concentrations	maternal education,	of ultra-	0
		7-8 years old	foods in the food's	(total	birth weight, BMI-	processed foods	
		between	total energy.	cholesterol,	for-age and energy	at preschool-	
		2001/2002-		LDL, HDL and	intake at 7-8 years	age (3-4 years)	
		2005/2006 (n =		triglycerides).	old.	was positively	
		345).				associated with	
						an increase in	
						total cholesterol	
						(adjusted	
						coefficient for a	
						1% increase in	
						the consumption	
						of ultra-	
						processed foods:	
						0.430; 95%CI:	
						0.008; 0.853) and	
						LDL (adjusted	
						coefficient	
						for a 1%	
						increase in the	
						consumption of	
						ultra-processed	
						foods: 0.369;	
						95%Cl: 0.005;	
						0.733) between	
						preschool-age	
						and school-age	
						(7-8 years).	
Leffa et al. 58	Cohort	Brazilian children	Participation of	Lipid	Sex, family income,	Children in the	High
(2020)		at 3 and 6 years	ultra-processed	concentrations	birth weight, pre-	last tertile of	
		old between	foods in the total	(total	gestational BMI,	consumption of	
		2011/2002 and	of food grams.	cholesterol,	BMI-for-age at 3	ultra-processed	
		2014/2005 (n =		LDL, HDL and	years old, energy	foods at 3 years	
		308).		triglycerides).	and fat intake at 3	old had higher	
					years old.	levels of total	
						cholesterol	
						(adjusted β:	
						0.22mmol/L;	
						95%CI: 0.04;	
						0.39) and serum	
						triglycerides	
						at 6 years old	
						(adjusted β:	
						0.11mmol/L;	
						95%Cl: 0.01; 0.20)	
						when compared	
						to those in the	
						lowest tertile.	

Box 3 (continued)

AUTHOR	STUDY DESIGN	STUDY	EXPOSURE	HEALTH	CONTROL	KEY FINDINGS	QUALITY
(YEAR)		PARTICIPANTS		OUTCOME	VARIABLES		2011-111
Tavares et al.	Cross-sectional	Brazilian	Participation of	Metabolic	Smoking status,	Participants in	Low
⁵⁹ (2012)		adolescents aged	ultra-processed	syndrome.	family history	the last tertile of	
(20.2)		between 12 to	foods in the total	- Synaronner	of hypertriacyl-	consumption of	
		19 years old in	of food grams.		glycerolemia and	ultra-processed	
		2006/2007 (n =	01.1000 8.01101		energy intake.	foods had a	
		210).				higher prevalence	
						of metabolic	
						syndrome	
						(adjusted PR:	
						2.48, p-value =	
						0.012).	
Edalati et al. 60	Cross-sectional	Iranian	Daily grams of	Urinary levels	Sex, age, physical	Adolescents	Mean
(2020)		adolescents aged	ultra-processed	of 8-hydroxy-	activity, BMI,	in the highest	
()		between 13 to 19	foods.	2'-deoxygua-	energy intake,	tertile of	
		years old from		nosine	consumption of	consumption of	
		the Karaj city, Iran		(8-OHdG).	whole grains, nuts	ultra-processed	
		(n = 139)			and legumes,	foods had higher	
					ratio between	urinary levels of	
					the ingestion	80HdG when	
					of unsaturated	compared to	
					and saturated	those in the	
					fatty acids and	lowest tertile	
					Mediterranean	(trend p-value =	
					dietary score.	0.004).	
Canella et al. 61	Ecological	Brazilian	Participation of	BMI and	Proportion of	The ultra-	Mean
(2014) *		population of all	ultra-processed	prevalence of	women, elderly	processed foods	
		ages 2008/2009	foods in the total	overweight and	people and	availability in	
		(n = 190,159).	energy available	obesity.	children in the	the household	
			for consumption at	,	stratum, income,	was positively	
			home.		region, family	and significantly	
					configuration, out-	associated	
					of-home expenses	with the mean	
					and complementary	BMI and the	
					calories, including	prevalence of	
					calories from	overweight and	
					processed foods.	obesity in the	
						households.	
						Participants	
						in the largest	
						quartile of	
						consumption of	
						ultra-processed	
						foods were 37%	
						more likely to	
						have obesity	
						than those in the	
						lower quartile.	

95%CI: 95% confidence interval; BMI: body mass indez; ELANA: Longitudinal Study of Adolescent Nutritional Assessment; INMA: Infancia y Medio Ambiente; OR: odds ratio; PR: prevalence ratio.

* Study with adults and children.

After adjusting for confounders, a 4-year study that followed a cohort of children from 3 to 4 years old of low socioeconomic status demonstrated that the intake of ultra-processed foods at preschool-age was associated with increases in serum cholesterol and LDL-cholesterol in preschool-age to school-age. After adjusting for confounders, a cohort study showed that the intake of ultra-processed foods at 3 years old was positively associated with serum levels of total cholesterol and triglycerides at 6 years old ⁵⁸. No associations were found for this outcome in cross-sectional studies ⁵⁷. No association was found between the consumption of ultra-processed foods and blood glucose ⁴⁹.

A study with adolescents between 12 and 19 years old in the city of Rio de Janeiro, Brazil, found a positive cross-sectional association between the consumption of ultra-processed foods and the metabolic syndrome ⁵⁹.

A study with Iranian adolescents between 13 to 19 years old found, after adjusting for confounders, a cross-sectional association between the consumption of ultra-processed foods and urinary levels of 8-OHdG, an oxidative DNA damage marker ⁶⁰.

Finally, an ecological study conducted with a survey of Brazilian family budgets showed, after adjusting for confounders, that the availability of ultra-processed foods at home was positively associated with the mean BMI value and the prevalence of overweight and obesity among its residents of all ages ⁶¹.

Cardiovascular diseases, type 2 diabetes, cancer, asthma and mortality

Box 4 describes the studies' main characteristics that assessed the association between the consumption of ultra-processed foods, cardiovascular diseases, type diabetes, cancer and mortality in adults and asthma in children.

Adults

a) Cardiovascular diseases

The association between the consumption of ultra-processed foods and cardiovascular diseases was examined in a NutriNet Santé cohort study of French adults (high methodological quality). After adjusting for confounders, the consumption of ultra-processed foods was associated with a higher incidence of cardiovascular disease in general and for the subgroups of coronary heart disease and cerebrovascular diseases ⁶².

b) Type 2 diabetes

The association between the consumption of ultra-processed foods and type 2 diabetes in adults was examined in two cohort studies (high methodological quality). Analysis of the NutriNet Santé ⁶³ and UK Biobank ⁶⁴ cohorts demonstrated associations (after adjusting for confounders) between the consumption of ultra-processed foods and the incidence of type 2 diabetes.

c) Cancer

The association between the consumption of ultra-processed foods and general, prostate, colorectal and breast cancer in adults was examined in a cohort study (high methodological quality) ⁶⁵ and breast and prostate cancer also in two case-control studies (mean and low quality, respectively) ^{66,67}.

After adjusting for confounders, a study carried out in the NutriNet Santé cohort showed direct associations for general and breast cancer (but not for prostate and colorectal cancer) ⁶⁵. A hospitalbased case-control study conducted in Brazil showed that participants with breast cancer had a higher intake of ultra-processed foods when compared to those in the control group (non-cancer patients from the same hospital) ⁶⁶.

Box 4

Characteristics of studies that assessed the association between the consumption of ultra-processed foods and cardiovascular diseases, type 2 diabetes, cancer, asthma and all-cause mortality in children and adults.

AUTHOR	STUDY DESIGN	STUDY	EXPOSURE	HEALTH	CONTROL	KEY FINDINGS	QUALITY
(YEAR)		PARTICIPANTS		OUTCOME	VARIABLES		
Srour et al. 62	Cohort	French adults	Participation of	Incidence of	Age, sex, education,	Participants	High
(2019)		aged 18 years	ultra-processed	cardiovascular	physical activity,	in the largest	
		old or older	foods in the total	diseases and	smoking status,	quartile of	
		with a mean	of food grams.	coronary heart	family history of	consumption of	
		follow-up of 5.2		disease.	cardiovascular	ultra-processed	
		years between			diseases and	foods had a	
		2009-2018			type 2 diabetes	higher risk of	
		(n = 105,159)			at baseline,	cardiovascular	
		(NutriNet Santé).			dyslipidemia,	disease (adjusted	
					hypertension,	HR = 1.23; 95%CI:	
					hyper-	1.04; 1.45) when	
					triglyceridemia	compared to	
					and treatment for	those in the	
					these conditions,	lowest quartile.	
					BMI, energy		
					intake, alcohol		
					consumption,		
					intake of sugar,		
					fat, saturated fatty		
					acid and sodium,		
					consumption of		
					sugary products,		
					processed red		
					meat, drinks and		
					sauces and number		
					of 24-hour dietary		
					records.		
Srour et al. 63	Cohort	French adults	Participation of	Incidence of	Age, sex, education,	The consumption	High
(2020)		aged 18 years	ultra-processed	type 2 diabetes.	physical activity,	of ultra-	
		old or older	foods in the total		smoking status,	processed foods	
		with a mean	of food grams.		family history of	was associated	
		follow-up of 6			cardiovascular	with a higher risk	
		years between			disease,	of developing	
		2009-2019			dyslipidemia,	type 2 diabetes	
		(n = 104,707)			hypertension	(adjusted HR	
		(NutriNet Santé).			and hyper-	associated with a	
					triglyceridemia	10% increase in	
					and treatment for	the consumption	
					these conditions,	of ultra-	
					weight change	processed foods	
					during the follow-	= 1.13; 95%Cl:	
					up BMI, energy	1.01; 1.27).	
					intake, alcohol		
					consumption and		
					number of 24-hour		
					dietary records.		

AUTHOR	STUDY DESIGN	STUDY	EXPOSURE	HEALTH	CONTROL	KEY FINDINGS	QUALITY
(YEAR)		PARTICIPANTS		OUTCOME	VARIABLES		
Levy et al. 64	Cohort	British adults	Participation of	Incidence of	Age, sex, ethnicity,	Participants	High
(2021)		aged 40 to 69	ultra-processed	type 2 diabetes.	socioeconomic	in the largest	
		years old with	foods in the total		index, physical	quartile of	
		a mean follow-	of food grams.		activity, smoking	consumption of	
		up of 5.4 years			status, family	ultra-processed	
		between 2007-			history of type	foods had a	
		2019 (n = 21,730)			2 diabetes,	higher risk of	
		(UK Biobank).			overweight at	type 2 diabetes	
					baseline and energy	(adjusted HR	
					intake.	= 1.44; 95%CI:	
						1.04; 2.02) when	
						compared to	
						those in the	
						lowest quartile.	
Fiolet et al. 65	Cohort	French adults	Participation of	Incidence of	Age, sex, education,	Participants	High
(2018)		aged 18 years	ultra-processed	all types of	physical activity,	in the largest	
		old or older	foods in the total	cancer and	smoking status,	quartile of	
		with a mean	of food grams.	breast, prostate	family history of	consumption of	
		follow-up of 5		and colorectal	cancer, number	ultra-processed	
		years between		cancer.	of children,	foods had a	
		2009-2013			menopause,	higher risk of all	
		(n = 104,980)			hormonal	types of cancer	
		(NutriNet Santé).			treatment for	(adjusted HR	
					menopause and	= 1.23; 95%Cl	
					use of baseline	1.08; 1.40) and	
					oral contraception,	post-menopausal	
					height, BMI, energy	breast cancer	
					intake (without	(adjusted HR	
					alcohol), alcohol	= 1.38, 95%CI:	
					consumption,	1.05; 1.81) when	
					intake of lipids,	compared to	
					sodium and	those in the	
					carbohydrates,	lowest quartile.	
					western dietary		
					pattern and		
					number of 24-hour		
					dietary records.		
Queiroz et al.	Case-control	Brazilian women	Regular	Breast cancer.	BMI and energy	Participants with	Mean
⁶⁶ (2018)		with an average	consumption of		intake.	cancer had a	
		age of 53.1 years	ultra-processed			higher regular	
		old in 2015 (n =	foods (five or more			consumption of	
		118).	times a week).			ultra-processed	
						foods compared	
						to those in the	
						control group	
						(adjusted OR =	
						2.35; 95%Cl: 1.08;	
						5.12).	

Box 4 (continued)

AUTHOR	STUDY DESIGN	STUDY	EXPOSURE	HEALTH	CONTROL	KEY FINDINGS	QUALITY
(YEAR)		PARTICIPANTS		OUTCOME	VARIABLES		
Trudeau et al.	Case-control	Canadian men	Consumption	Prostate cancer.	Age, education,	No significant	Low
⁶⁷ (2020)		under the age	frequency of ultra-		ethnicity, marital	association was	
		of 76 years old	processed foods.		status, family	found between	
		between 2005			history of prostate	the consumption	
		and 2009 (n =			cancer and time	of ultra-	
		1,919).			since the last	processed foods	
					screening for	and prostate	
					prostate cancer.	cancer.	
Kim et al. 68	Cohort	Adults from the	Consumption of	Mortality from	Age, sex, ethnicity,	Participants	High
(2019)		United States	ultra-processed	cardiovascular	poverty level,	in the largest	
		aged 20 years	foods servings/day.	disease and all-	education, physical	quartile of	
		old or older with		causes.	activity, smoking	consumption of	
		a mean follow-			status, high	ultra-processed	
		up of 19 years			blood pressure,	foods had a	
		between 1988-			total cholesterol,	higher risk of all-	
		1994 (n = 11,898)			glomerular filtration	cause mortality	
		(NHANES III).			rate, BMI, energy	(adjusted HR	
					intake and alcohol	= 1.30; 95%CI:	
					consumption.	1.08; 1.57) when	
						compared to	
						those in the	
						lowest quartile.	
						No association	
						was found with	
						deaths from	
						cardiovascular	
						disease (adjusted	
						HR = 1.13; 95%CI:	
						0.74; 1.71).	

AUTHOR	STUDY DESIGN	STUDY	EXPOSURE	HEALTH	CONTROL	KEY FINDINGS	QUALITY
(YEAR)		PARTICIPANTS		OUTCOME	VARIABLES		
Rico-Campà et	Cohort	Spanish adults	Consumption of	All-cause	Age, sex, education,	Participants	High
al. ⁶⁹ (2019)		aged 20 years	ultra-processed	mortality.	marital status,	in the highest	U
		old or older with	foods servings/	5	physical activity,	quartile of	
		a mean follow-	day (adjusted for		smoking status,	consumption of	
		up of 10.4 years	energy).		family history of	ultra-processed	
		between 1999-			cardiovascular	foods had a	
		2014 (n = 19,899)			disease, presence	higher risk of all-	
		(The Sun).			of cardiovascular	cause mortality	
					disease, cancer	(adjusted HR	
					or diabetes,	= 1.62; 95%Cl:	
					hypertension,	1.13; 2.33) when	
					hyper-	compared to	
					cholesterolemia	those in the	
					or depression	lowest quartile.	
					at baseline,		
					cumulative		
					exposure		
					to smoking		
					throughout life,		
					following a special		
					diet at baseline, BMI		
					at baseline, energy		
					intake, alcohol		
					consumption		
					and snacks		
					consumption		
					between meals.		
Schnabel et al.	Cohort	French adults	Participation of	All-cause	Age, sex, income,	The consumption	High
⁷⁰ (2019)		aged 45 years	ultra-processed	mortality.	education, marital	of ultra-	
		old or older with	foods in the total		status, place	processed foods	
		a mean follow-	of food grams.		of residence,	was associated	
		up of 7.1 years			physical activity,	with a higher	
		between 2009-			smoking status,	risk of all-	
		2017 (n = 44,551)			first degree family	cause mortality	
		(NutriNet Santé).			history of cancer	(adjusted HR	
					or cardiovascular	associated with a	
					diseases,	10% increase in	
					BMI, energy	the consumption	
					intake, alcohol	of ultra-	
					consumption,	processed foods	
					period of dietary	= 1.14; 95%Cl:	
					record and number	1.04; 1.27).	
					of dietary records.		

Box 4 (continued)

AUTHOR	STUDY DESIGN	STUDY	EXPOSURE	HEALTH	CONTROL	KEY FINDINGS	QUALITY
(YEAR)		PARTICIPANTS		OUTCOME	VARIABLES		
Blanco-Rojo et	Cohort	Spanish adults	Participation of	All-cause	Age, sex,	Participants	High
al. ⁷¹ (2019)		aged 18 years	ultra-processed	mortality.	education, living	in the largest	
		old or older with	foods in the food's		by themselves,	quartile of	
		a mean follow-	total energy.		physical activity,	consumption of	
		up of 7.7 years			smoking status,	ultra-processed	
		between 2008-			time watching TV,	foods had a	
		2016 (n = 11,898)			time performing	higher risk of all-	
		(ENRICA).			other sedentary	cause mortality	
					activities, number	(adjusted HR	
					of medications/	= 1.44; 95%CI:	
					day, presence of	1.01; 2.07) when	
					chronic conditions	compared to	
					and alcohol	those in the	
					consumption.	lowest quartile.	
Zhong et al. 72	Cohort	Adults from the	Consumption of	Mortality from	Age, sex, race,	Participants	High
(2021)		United States	ultra-processed	cardiovascular	education, marital	in the largest	
		aged between	foods servings/day.	disease.	status, aspirin	quintile of	
		55 and 74 years			use, smoking	consumption of	
		old with a mean			status, history	ultra-processed	
		follow-up of 13.5			of hypertension,	foods had a	
		years between			diabetes, physical	higher risk of	
		1993 and 2015 (n			activity, BMI, alcohol	mortality from	
		= 91,891) (<i>PLCO</i>			consumption	cardiovascular	
		Cancer Screening			and total energy	diseases	
		Trial).			consumption.	(adjusted HR	
						= 1.52; 95%Cl:	
						1.39; 1.67),	
						heart diseases	
						(adjusted HR	
						= 1.70; 95%Cl:	
						1.52; 1.89). No	
						association	
						was found with	
						deaths from	
						cerebrovascular	
						diseases	
						(adjusted HR =	
						1.00; 95%CI: 0.80;	
						1.23).	

AUTHOR	STUDY DESIGN	STUDY	EXPOSURE	HEALTH	CONTROL	KEY FINDINGS	QUALITY
(YEAR)		PARTICIPANTS		OUTCOME	VARIABLES		
Azeredo et al.	Cohort	Brazilian	Participation of	Incidence of	Sex, family income,	The consumption	High
⁷³ (2020)		adolescents born	ultra-processed	wheezing,	parental smoking	of ultra-	
		in 2004 assessed	foods in the food's	asthma and	up to the age of 6	processed foods	
		between 6 and	total energy.	severe asthma.	years old, maternal	at 6 years old was	
		11 years old (n			variables (age, race/	not associated	
		= 2,190) (Pelotas			color, education,	with asthma	
		birth cohort			parity, smoking	(adjusted OR =	
		2004).			during pregnancy,	0.84, 95%Cl: 0.58;	
					perinatal asthma),	1.21), severe	
					energy requirement	asthma (adjusted	
					estimates, energy	OR = 1.12; 95%Cl:	
					consumption.	0.62; 2.03) or	
						wheezing in the	
						chest (adjusted	
						OR = 0.85; 95%Cl:	
						0.54; 1.34) at 11	
						years old.	
Melo et al. 74	Cross-sectional	Ninth grade	Frequency score of	Asthma and	Age, sex, maternal	Participants	Mean
(2018)		students from	the consumption	wheezing.	education, type,	in the largest	
		Brazilian public	of ultra-processed		region and urban	quintile of	
		and private	foods.		area of the school,	consumption of	
		schools in 2012 (n			physical activity,	ultra-processed	
		= 109,104).			parental smoking,	foods were more	
					smoking in the last	likely to have	
					30 days and alcohol	asthma (OR =	
					consumption in the	1.27; 95%CI: 1.15;	
					last 30 days.	1.41) or wheezing	
						(OR = 1.42;	
						95%CI: 1.35; 1.50)	
						when compared	
						to those in the	
						smallest quintile.	
Elias et al. 75	Cross-sectional	Ninth grade	Frequency score of	Active asthma.	Region of residence	Participants	Mean
(2019)		students from	the consumption		and diagnosis of	with higher	
		Brazilian public	of ultra-processed		past asthma.	consumption of	
		and private	foods.			ultra-processed	
		schools in 2012 (n				foods were	
		= 106,983).				more likely to	
						experience	
						wheezing	
						(adjusted OR	
						= 1.16; 95%Cl:	
						1.11; 1.19) when	
						compared to	
						those with lower	
						consumption.	

95%CI: 95% confidence interval; BMI: body mass index; ENRICA: *Study on Nutrition and Cardiovascular Risk in Spain*; HR: harzard ratio; NANHES: *National Health and Nutrition Examination Survey*; OR: odds ratio.

d) Mortality

The association between the consumption of ultra-processed foods and all-cause mortality was assessed in four cohort studies (high methodological quality) ^{68,69,70,71} and mortality from cardiovascular diseases was studied in two cohort studies (high methodological quality) ^{68,72}. After adjusting for possible confounders, analysis of the NHANES III ⁶⁸ follow-up study, and of The Sun study ⁶⁹, NutriNet Santé ⁷⁰ and *Study on Nutrition and Cardiovascular Risk in Spain* (ENRICA) ⁷¹ cohorts found dose-response associations between the consumption of ultra-processed foods and the risk of all-cause death. After adjusting for possible confounders, association and dose-response between the consumption of ultra-processed foods and the risk of death from cardiovascular diseases was found in the *PLCO Cancer Screening Trial* ⁷² study, but not in the NHANES III ⁶⁸ follow-up study.

Children

a) Asthma or wheezing

The association between the consumption of ultra-processed foods and asthma or wheezing was assessed in adolescents in a cohort study (high methodological quality) ⁷³ and two cross-sectional studies with national representativeness samples (both with medium quality) ^{74,75}.

A Pelotas birth cohort study in 2004 found no association between the consumption of ultra-processed foods at 6 years old and the occurrence of wheezing or asthma at 11 years old ⁷³. The two crosssectional studies were carried out with a representative sample of Brazilian adolescents from the 9th grade. After adjusting for possible confounders, they found dose-response associations between an ultra-processed food consumption score and the occurrence of asthma and wheezing ^{74, 75}.

Frailty, gastrointestinal diseases and depression

Box 5 describes the studies' main characteristics that assessed the association between the consumption of ultra-processed foods and frailty and gastrointestinal diseases in adults and depression in adults and pregnant women.

Adults

a) Frailty

The association between the consumption of ultra-processed foods and frailty was examined in a cohort study of Spaniards with 60 years old (high methodological quality). After adjusting for confounders, the consumption of ultra-processed foods was associated with a higher incidence of frailty ⁷⁶.

b) Gastrointestinal diseases

The association between the consumption of ultra-processed foods and gastrointestinal disorders in adults was examined in a cohort study (high methodological quality) ⁷⁷ and a cross-sectional study (mean quality) ⁷⁸.

A study carried out with the French cohort NutriNet Santé showed no association between the consumption of ultra-processed foods and the incidence of inflammatory bowel diseases after adjusting for confounders (only in the gross analysis) ⁷⁷. A cross-sectional study demonstrated, after adjusting for confounders, the association with the occurrence of irritable bowel syndrome and functional dyspepsia ⁷⁸.

Box 5

Characteristics of studies that assessed the association between the consumption of ultra-processed foods and depression, frailty and gastrointestinal diseases in adults and pregnant women.

AUTHOR	STUDY DESIGN	STUDY	EXPOSURE	HEALTH	CONTROL	KEY FINDINGS	QUALITY
(YEAR)		PARTICIPANTS		OUTCOME	VARIABLES		
Sandoval-	Cohort	Spanish elderly	Participation of	Incidence of	Age, sex, education,	Participants	High
Insausti et al.		people aged 60	ultra-processed	frailty.	marital status,	in the largest	
⁷⁶ (2019)		years old or older	foods in the food's		smoking status,	quartile of	
		with a mean	total energy.		diagnosis of chronic	consumption of	
		follow-up of 3.5			respiratory disease,	ultra-processed	
		years between			coronary heart	foods had a	
		2008-2012 (n =			disease, stroke,	higher risk of	
		1,822) (ENRICA).			osteoarthritis/	frailty (adjusted	
					arthritis, cancer and	OR = 3.67; 95%CI:	
					depression with	2.00; 6.73) when	
					treatment, number	compared to	
					of medications	those in the	
					used and previous	lowest quartile.	
					consumption of		
					alcohol.		
Vasseur et al.	Cohort	French adults	Participation of	Incidence of	Age, sex, income,	Participants in	High
77 (2020)		aged 18 years	ultra-processed	inflammatory	education, marital	the highest tertile	
		old or older	foods in the total	bowel diseases.	status, place	of consumption	
		with a mean	of food grams.		of residence,	of ultra-	
		follow-up of 2.3			physical activity,	processed foods	
		years between			smoking status,	had a higher	
		2009-2016 (n			use of hormonal	risk of having	
		= 105,832)			contraception,	inflammatory	
		(NutriNet Santé).			BMI, energy intake,	bowel disease	
					dietary pattern	(gross RR = 1.81;	
					derived from the	95%Cl: 1.05; 3.12)	
					analysis of main	when compared	
					components and	to those in the	
					number of 24-hour	lowest tertile	
					dietary records.	in the gross	
						analysis. The	
						trend did not	
						remain significant	
						after adjusting	
						for possible	
						confounding	
						factors.	

Box 5 (continued)

AUTHOR	STUDY DESIGN	STUDY	EXPOSURE	HEALTH	CONTROL	KEY FINDINGS	QUALITY
(YEAR)		PARTICIPANTS		OUTCOME	VARIABLES		
Schnabel et al.	Cross-sectional	French adults	Participation of	Functional	Age, sex, income,	Participants	Mean
⁷⁸ (2018)		aged 18 years old	ultra-processed	gastrointestinal	education, marital	in the largest	
		or older in 2009	foods in the total	disorders	status, area of	quartile of	
		(n = 33,343).	of food grams.	(irritable bowel	residence, physical	consumption of	
				syndrome,	activity, smoking	ultra-processed	
				functional	status, BMI,	foods were	
				constipation,	time of dietary	more likely to	
				constipation,	records, time	have irritable	
				functional	between dietary	bowel syndrome	
				diarrhea and	questionnaires'	(adjusted OR	
				functional	adherence to	= 1.25; 95%Cl:	
				dyspepsia).	national nutritional	1.12; 1.39)	
					recommendations,	and functional	
					energy intake.	dyspepsia	
						(adjusted OR	
						= 1.25; 95%Cl;	
						1.05; 1.47) when	
						compared to	
						those in the	
						lowest quartile.	
Adjibade et al.	Cohort	French adults	Participation of	Incidence of	Age, sex, monthly	Participants	High
⁷⁹ (2019)		aged 18 years	ultra-processed	depressive	family income,	in the largest	
		old or older with	foods in the total	symptoms.	education, marital	quartile of	
		a mean follow-	of food grams.		status, occupation,	consumption of	
		up of 5.4 years			area of residence,	ultra-processed	
		between 2009-			physical activity,	foods had a	
		2018 (n = 26,730)			BMI, energy	higher risk of	
		(NutriNet Santé).			intake (without	presenting	
					alcohol), alcohol	depressive	
					consumption and	symptoms	
					number of 24-hour	(adjusted HR	
					dietary records.	= 1.30; 95%Cl:	
						1.15; 1.47) when	
						compared to	
						those in the	
						lowest quartile.	

AUTHOR	STUDY DESIGN	STUDY	EXPOSURE	HEALTH	CONTROL	KEY FINDINGS	QUALITY
(YEAR)		PARTICIPANTS		OUTCOME	VARIABLES		
Gómez-	Cohort	Spanish middle-	Participation of	Incidence of	Age, sex,	Participants	High
Donoso et al.		aged adults with	ultra-processed	depression.	education, marital	in the largest	
⁸⁰ (2019)		a mean follow-up	foods in the total		status, physical	quartile of	
		of 10.3 years	of food grams.		activity, smoking	consumption of	
		between 1999-			status, living	ultra-processed	
		2014 (n = 14,907)			by themselves,	foods had a	
		(The Sun).			employment	higher risk of	
					status, health care	depression	
					career, weekly	(adjusted HR	
					working hours, self-	= 1.33; 95%Cl	
					perceived levels of	1.07; 1.64) when	
					competitiveness,	compared to	
					anxiety and	those in the	
					dependence at	lowest quartile.	
					baseline, BMI		
					at baseline,		
					energy intake,		
					adherence to the		
					Mediterranean		
					dietary.		
Badanai et al.	Cross-sectional	Brazilian	Participation of	Depressive	Age, education,	Participants in	Low
⁸¹ (2019)		pregnant women	ultra-processed	symptoms or	marital status,	the highest tertile	
		aged 20 years	foods in the food's	sadness in	physical activity,	of consumption	
		old or older in	total energy.	pregnancy.	smoking status,	of ultra-	
		2011/2012 (n =			hours of sleep,	processed foods	
		784).			gestational week	were more likely	
					at the time of the	to experience	
					interview, pre-	depression or	
					gestational BMI,	sadness (adjusted	
					energy intake	OR = 2.39; 95%CI:	
					and alcohol	1.29; 4.41) when	
					consumption.	compared to	
						those in the	
						lowest tertile.	

95%CI: 95% confidence interval; BMI: body mass index; ENRICA: *Study on Nutrition and Cardiovascular Risk in Spain*; HR: harzard ratio; OR: *odds ratio*; RR: relative risk.

c) Depression

The association between the consumption of ultra-processed foods and depression/depressive symptoms in adults was examined in two cohort studies (high methodological quality). Results of studies carried out in the NutriNet Santé ⁷⁹ and The Sun ⁸⁰ cohort showed associations (after adjusting for confounders) between the consumption of ultra-processed foods and the incidence of depression.

The overall evidence quality was assessed as high for the association between the consumption of ultra-processed foods and obesity and mortality indicators, moderate for type 2 diabetes and depression and low for the other outcomes.

Pregnant woman

a) Depression

In pregnant women, a cross-sectional study (low methodological quality) carried out in a mediumsized city in Brazil showed, after adjusting for confounders, a positive association between the consumption of ultra-processed foods and symptoms of depression ⁸¹.

Discussion

This review described the results of several studies that showed the association between the consumption of ultra-processed foods and some non-communicable diseases and their risk factors. The evidence seems particularly consistent with regard to obesity in adults, whose association with the consumption of ultra-processed foods has been demonstrated, with dose-response effect, in crosssectional studies with representative samples from five countries (United States, United Kingdom, Australia, Canada and Brazil), in four large cohort studies and in a randomized clinical trial. Large cohort studies have also shown an association between the consumption of ultra-processed foods and the risk of cardiovascular diseases, type 2 diabetes and breast cancer – even after adjusting for obesity. Two cohort studies also demonstrated an association between the consumption of ultra-processed foods and the incidence of depression. Additionally, four large cohort studies have described the association between the consumption of ultra-processed foods and the incidence of disease burden. Most of these studies were carried out in high-income countries and in adults. In children, studies are limited in number and methodological quality, although the available evidence suggests associations in the same direction. No studies that evaluated outcomes of non-chronic diseases were found.

Although several mechanisms are not completely elucidated, numerous characteristics of ultraprocessed foods, determined by the highly processed nature of these foods, contribute to their role in disease risk.

Ultra-processed foods are convenient, practical and portable. They are generally developed to be consumed anywhere. Most of the time, they are sold as snacks, drinks or dishes ready or semi-ready for consumption and promoted by aggressive marketing strategies. Therefore, they are easily associated with ways of eating that induce excessive and "unnoticed" consumption of calories, in addition to replacing freshly made meals, based on fresh or minimally processed foods. Forde et al. ¹⁴ showed that people exposed to ultra-processed foods ate meals 50% faster than those exposed to non-ultra-processed foods and suggested that this would be an important mechanism to explain differences in energy consumption. Large portion sizes, a frequent feature in many ultra-processed foods, have also been associated with weight gain ^{82,83}.

Ultra-processed foods have a higher energy density, more free sugar and saturated and trans fats, and less dietary fiber, protein, micronutrients and bioactive compounds, than non-ultra-processed foods, and its consumption is systematically associated with the deterioration of the nutritional quality of food 3,4,5,6,7,8,11,12. It also induces high glycemic responses and have low satiety potential ¹³. Its ingredients, which are mainly characterized by sugars and fats, added to cosmetic additives and processing techniques that use the destruction of the food matrix and the withdrawal of water, prevent its nutritional content from being transmitted accurately to the brain, affecting satiety control systems. Many of these additives, in particular thickeners and dyes, in addition to artificial sweeteners, have also been associated with metabolic changes ^{84,85,86,87}. Increasing evidence indicates that a large part of this mechanism may be associated with disturbances in intestinal microbiota homeostasis caused by the consumption of ultra-processed foods ^{17,88}.

Finally, chemical compounds formed during manufacturing processes or released from the packaging materials of ultra-processed foods are also other mechanisms that explain the association between the consumption of ultra-processed foods and the occurrence of diseases. Acrylamide, acrolein and nitrosamine, contaminants present in thermal-treated processed foods, have been associated with an increased risk of cardiovascular diseases ^{89,90}, neoplasia ⁹¹ and insulin resistance ^{92,93}. Bisphenol A – an industrial chemical used in some plastic packaging for ultra-processed foods – interferes with cellular pathways related to weight and glucose homeostasis and its intake has already been associated with an increased risk of obesity ⁹⁴ and a number of chronic diseases ⁹⁵. Recent studies conducted with data from the population in the United States assessed at NHANES have shown that the consumption of ultra-processed foods was associated with a higher urinary concentration of bisphenols, phthalates and organophosphates, all endocrine disruptors used in industrial plastic packaging ^{15,16}.

The findings of this study are even more relevant when we consider that, in the last decades, the consumption of ultra-processed foods has increased significantly and accelerated in several countries driven by recent changes in the food system ². Since the 1980s, economic policies enacted by global organizations supported by the most powerful governments have favored the phenomenal rise of ultra-processed food transnationals. These policies deregulated the industry, promoted the flow of capital, opened countries to foreign investment, allowed transnational companies to take over national companies and restricted national governments from introducing statutory policies to limit their consumption. Meanwhile, economic growth and the increase in the average income of some populations have made ultra-processed foods accessible to more people ⁹⁶.

This study has limitations. It was observed that some original studies were more susceptible to bias, such as those that used food consumption data collection instruments subject to memory bias, or self-reported weight and height. The use of the quality assessment tool, however, was important to take into account these possible biases in the presentation of the results. Our study limited the search to articles available in the literature (without accessing "gray literature", conference proceedings or studies in progress). Thus, for many outcomes, for populations in low- and middle-income countries and for children and adolescents, we find few studies and of low methodological quality. Therefore, some results must be interpreted as not conclusive. On the other hand, this study used a comprehensive and rigorous research and selection strategy that identified studies from different designs carried out in different population subgroups. Although cross-sectional studies contribute less weight in the evaluation of the evidence totality, they are important in a scenario of few studies or in the absence of other available evidence. Thus, we believe that our results summarize the best current data on the association between the consumption of ultra-processed foods and health, also highlighting the gaps in knowledge that need further investigation.

The relevance of the NOVA classification is increasingly recognized, and, in recent years, it has been addressed in the recommendations of several international entities, such as the Food and Agriculture Organization of the United Nations (FAO) ⁹⁷, the Pan American Health Organization (PAHO) ⁹⁸ and the Lancet Commission on Obesity ⁹⁹, in addition to national food guides ¹⁰⁰. The *Dietary Guidelines for the Brazilian Population*, published in 2014, was a pioneer in using this classification as the basis for its recommendations and brings as a golden rule that "*it is preferred fresh or minimally processed foods and their culinary preparations to ultra-processed foods*" ¹⁰⁰.

In conclusion, our study described the results of several studies that demonstrated the impact of the consumption of ultra-processed foods on health, with particularly consistent evidence for obesity and other chronic non-communicable diseases and all-cause mortality in adults. Additionally, the review made it possible to identify gaps in the literature, namely studies with outcomes of nonchronic diseases (such as nutritional deficiencies), with children and adolescents and in populations from low- and middle-income countries. Despite this, these results have important implications, considering that the reduction in the consumption of ultra-processed foods by the populations can be reverted in important benefits.

Contributors

M. L. C. Louzada and C. S. Costa participated in the conception, analysis and interpretation of data and writing of the manuscript. T. N. Souza and G. L. Cruz were literature reviewers and contributed to the writing of the article. R. B. Levy e C. A. Monteiro contributed to the data interpretation and carried out a relevant critical review of the intellectual content.

Additional informations

ORCID: Maria Laura da Costa Louzada (0000-0002-3756-2301); Caroline dos Santos Costa (0000-0002-3522-1546); Thays Nascimento Souza (0000-0001-5405-5398); Gabriela Lopes da Cruz (0000-0002-8220-3498); Renata Bertazzi Levy (0000-0001-5388-7002); Carlos Augusto Monteiro (0000-0002-3777-1533).

Acknowledgments

To São Paulo State Research Foundation (FAPESP; Project 2015/14900-9 and Project 2019/06852-5) and Brazilian National Research Council (CNPq; Project n. 408462/2017-5).

References

- Monteiro CA, Cannon G, Levy RB, Moubarac JC, Louzada ML, Rauber F, et al. Ultra-processed foods: what they are and how to identify them. Public Health Nutr 2019; 22:936-41.
- Monteiro CA, Moubarac JC, Cannon G, Ng SW, Popkin B. Ultra-processed products are becoming dominant in the global food system. Obes Rev 2013; 14:21-8.
- Martínez Steele E, Baraldi LG, Louzada ML, Moubarac JC, Mozaffarian D, Monteiro CA. Ultra-processed foods and added sugars in the US diet: evidence from a nationally representative cross-sectional study. BMJ Open 2016; 6:e009892.
- 4. Moubarac JC, Batal M, Louzada ML, Martinez Steele E, Monteiro CA. Consumption of ultra-processed foods predicts diet quality in Canada. Appetite 2017; 108:512-20.
- Rauber F, Louzada MLD, Steele EM, Millett C, Monteiro CA, Levy RB. Ultra-processed food consumption and chronic non-communicable diseases-related dietary nutrient profile in the UK (2008-2014). Nutrients 2018; 10:587.
- Machado PP, Steele EM, Levy RB, Sui ZX, Rangan A, Woods J, et al. Ultra-processed foods and recommended intake levels of nutrients linked to non-communicable diseases in Australia: evidence from a nationally representative cross-sectional study. BMJ Open 2019; 9:e029544.
- Cediel G, Reyes M, Louzada MLC, Steele EM, Monteiro CA, Corvalán C, et al. Ultra-processed foods and added sugars in the Chilean diet (2010). Public Health Nutr 2018; 21:125-33.
- Marron-Ponce JA, Flores M, Cediel G, Monteiro CA, Batis C. Associations between consumption of ultra-processed foods and intake of nutrients related to chronic non-communicable diseases in Mexico. PLoS One 2019; 119:1852-65.
- Martins APB, Levy RB, Claro RM, Moubarac JC, Monteiro CA. Increased contribution of ultra-processed food products in the Brazilian diet (1987-2009). Rev Saúde Pública 2013; 47:656-65.
- Instituto Brasileiro de Geografia e Estatística. Pesquisa de Orçamentos Familiares 2017-2018: avaliação nutricional da disponibilidade domiciliar de alimentos no Brasil. Rio de Janeiro: Instituto Brasileiro de Geografia e Estatística; 2020.
- 11. Louzada MLC, Ricardo CZ, Steele EM, Levy RB, Cannon G, Monteiro CA. The share of ultra-processed foods determines the overall nutritional quality of diets in Brazil. Public Health Nutr 2018; 21:94-102.
- 12. Martínez Steele E, Monteiro CA. Association between dietary share of ultra-processed foods and urinary concentrations of phytoestrogens in the US. Nutrients 2017; 9:209.
- Fardet A. Minimally processed foods are more satiating and less hyperglycemic than ultra-processed foods: a preliminary study with 98 readyto-eat foods. Food Funct 2016; 7:2338-46.

- 14. Forde CG, Mars M, de Graaf K. Ultra-processing or oral processing? A role for energy density and eating rate in moderating energy intake from processed foods. Curr Dev Nutr 2020; 4:nzaa019.
- Buckley JP, Kim H, Wong E, Rebholz CM. Ultra-processed food consumption and exposure to phthalates and bisphenols in the US National Health and Nutrition Examination Survey, 2013-2014. Am J Clin Nutr 2019; 131:105057.
- Kim H, Rebholz CM, Wong E, Buckley JP. Urinary organophosphate ester concentrations in relation to ultra-processed food consumption in the general US population. Environ Res 2020; 182:109070.
- 17. Zinöcker M, Lindseth I. The Western dietmicrobiome-host interaction and its role in metabolic disease. Nutrients 2018; 10:365.
- National Institutes of Health. Study quality assessment tools. https://www.nhlbi.nih.gov/ health-topics/study-quality-assessment-tools (accessed on Apr/2020).
- Hall KD, Ayuketah A, Brychta R, Cai H, Cassimatis T, Chen KY, et al. Ultra-processed diets cause excess calorie intake and weight gain: an inpatient randomized controlled trial of ad libitum food intake. Cell Metab 2019; 30:67-77.e3.
- 20. Canhada SL, Luft VC, Giatti L, Duncan BB, Chor D, Fonseca MJM, et al. Ultra-processed foods, incident overweight and obesity, and longitudinal changes in weight and waist circumference: the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Public Health Nutr 2020; 23:1076-86.
- 21. Mendonça RD, Pimenta AM, Gea A, de la Fuente-Arrillaga C, Martínez-González MA, Lopes AC, et al. Ultraprocessed food consumption and risk of overweight and obesity: the University of Navarra Follow-Up (SUN) cohort study. Am J Clin Nutr 2016; 104:1433-40.
- Rauber F, Chang K, Vamos EP, Louzada MLC, Monteiro CA, Millett CJ, et al. Ultra-processed food consumption and risk of adiposity: a prospective cohort study of UK Biobank. Eur J Nutr 2021; 60:2169-80.
- 23. Beslay M, Srour B, Méjean C, Allès B, Fiolet T, Debras C, et al. Ultra-processed food intake in association with BMI change and risk of overweight and obesity; a prospective analysis of the French NutriNet-Santé cohort. PLoS Med 2020; 17:e1003256.
- 24. Adams J, White M. Characterisation of UK diets according to degree of food processing and associations with socio-demographics and obesity: cross-sectional analysis of UK National Diet and Nutrition Survey (2008-12). Int J Behav Nutr Phys Act 2015; 12:160.
- 25. Louzada ML, Baraldi LG, Steele EM, Martins AP, Canella DS, Moubarac JC, et al. Consumption of ultra-processed foods and obesity in Brazilian adolescents and adults. Prev Med 2015; 81:9-15.
- Juul F, Martínez-Steele E, Parekh N, Monteiro CA, Chang VW. Ultra-processed food consumption and excess weight among US adults. Br J Nutr 2018; 120:90-100.

- 27. Machado PP, Martínez-Steele E, Levy RB, Louzada MLC, Rangan A, Woods J, et al. Ultra-processed food consumption and obesity in the Australian adult population. Nutr Diabetes 2020; 10:39.
- Rauber F, Martínez-Steele E Louzada MLC, Millett C, Monteiro CA, Levy RB. Ultraprocessed food consumption and indicators of obesity in the United Kingdom population (2008-2016). PLoS One 2020; 15:e0232676.
- Nardocci M, Leclerc BS, Louzada ML, Monteiro CA, Batal M, Moubarac JC. Consumption of ultra-processed foods and obesity in Canada. Can J Public Health 2019; 110:4-14.
- Seale E, Greene-Finestone LS, de Groh M. Examining the diversity of ultra-processed food consumption and associated factors in Canadian adults. Appl Physiol Nutr Metab 2020; 45:857-64.
- Julia C, Martinez L, Allès B, Touvier M, Hercberg S, Méjean C, et al. Contribution of ultraprocessed foods in the diet of adults from the French NutriNet-Santé study. Public Health Nutr 2018; 21:27-37.
- 32. Silva FM, Giatti L, Figueiredo RC, Molina MDB, Cardoso LD, Duncan BB, et al. Consumption of ultra-processed food and obesity: cross sectional results from the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil) cohort (2008-2010). Public Health Nutr 2018; 21:2271-9.
- 33. Djupegot IL, Nenseth CB, Bere E, Bjørnarå HBT, Helland SH, Øverby NC, et al. The association between time scarcity, sociodemographic correlates and consumption of ultraprocessed foods among parents in Norway: a cross-sectional study. BMC Public Health 2017; 17:447.
- 34. Pan American Health Organization. Ultraprocessed food and drink products in Latin America: trends, impact on obesity, policy implications. Washington DC: Pan American Health Organization; 2015.
- 35. Vandevijvere S, Jaacks LM, Monteiro CA, Moubarac JC, Girling-Butcher M, Lee AC, et al. Global trends in ultraprocessed food and drink product sales and their association with adult body mass index trajectories. Obes Rev 2019; 20 Suppl 2:10-9.
- 36. Monteiro CA, Moubarac J-C, Levy RB, Canella DS, Louzada MLC, Cannon G. Household availability of ultra-processed foods and obesity in nineteen European countries. Public Health Nutr 2018; 21:18-26.
- 37. Mendonça RD, Lopes ACS, Pimenta AM, Gea A, Martínez-González MA, Bes-Rastrollo M. Ultra-processed food consumption and the incidence of hypertension in a Mediterranean cohort: The Seguimiento Universidad de Navarra Project. Am J Hypertens 2017; 30:358-66.
- Martínez Steele E, Juul F, Neri D, Rauber F, Monteiro CA. Dietary share of ultra-processed foods and metabolic syndrome in the US adult population. Prev Med 2019; 125:40-8.

- 39. Lavigne-Robichaud M, Moubarac J-C, Lantagne-Lopez S, Johnson-Down L, Batal M, Sidi EAL, et al. Diet quality indices in relation to metabolic syndrome in an Indigenous Cree (Eeyouch) population in northern Quebec, Canada. Public Health Nutr 2018; 21:172-80.
- 40. Nasreddine L, Tamim H, Itani L, Nasrallah MP, Isma'eel H, Nakhoul NF, et al. A minimally processed dietary pattern is associated with lower odds of metabolic syndrome among Lebanese adults. Public Health Nutr 2018; 21:160-71.
- 41. Lopes A, Araújo LF. Association between consumption of ultra-processed foods and serum C-reactive protein levels: cross-sectional results from the ELSA-Brasil study. São Paulo Med J 2019; 137:169-76.
- 42. Montero-Salazar H, Donat-Vargas C, Moreno-Franco B, Sandoval-Insausti H, Civeira F, Laclaustra M, et al. High consumption of ultra-processed food may double the risk of subclinical coronary atherosclerosis: the Aragon Workers' Health Study (AWHS). BMC Med 2020; 18:235.
- 43. Alonso-Pedrero L, Ojeda-Rodríguez A, Martínez-González MA, Zalba G, Bes-Rastrollo M, Marti A. Ultra-processed food consumption and the risk of short telomeres in an elderly population of the Seguimiento Universidad de Navarra (SUN) Project. Am J Clin Nutr 2020; 111:1259-66.
- 44. Rohatgi KW, Tinius RA, Cade WT, Steele EM, Cahill AG, Parra DC. Relationships between consumption of ultra-processed foods, gestational weight gain and neonatal outcomes in a sample of US pregnant women. PeerJ 2017; 5:e4091-e.
- 45. Gomes CB, Malta MB, Benício MHD'A, Carvalhaes MABL. Consumption of ultra-processed foods in the third gestational trimester and increased weight gain: a Brazilian cohort study. Public Health Nutr 2021; 24:3304-12.
- 46. Crivellenti LC, Zuccolotto DCC, Sartorelli DS. Association between the Diet Quality Index Adapted for Pregnant Women (IQDAG) and excess maternal body weight. Rev Bras Saúde Mater Infant 2019; 19:275-83.
- 47. Sartorelli DS, Crivellenti LC, Zuccolotto DCC, Franco LJ. Relationship between minimally and ultra-processed food intake during pregnancy with obesity and gestational diabetes mellitus. Cad Saúde Pública 2019; 35:e00049318.
- 48. Bawaked RA, Fernández-Barrés S, Navarrete-Muñoz EM, González-Palacios S, Guxens M, Irizar A, et al. Impact of lifestyle behaviors in early childhood on obesity and cardiometabolic risk in children: results from the Spanish INMA birth cohort study. Pediatr Obes 2020; 15:e12590.
- 49. Costa CS, Rauber F, Leffa PS, Sangalli CN, Campagnolo PDB, Vitolo MR. Ultra-processed food consumption and its effects on anthropometric and glucose profile: a longitudinal study during childhood. Nutr Metab Cardiovasc Dis 2019; 29:177-84.

- Costa CS, Assunção MCF, Mola CL, Cardoso JS, Matijasevich A, Barros AJD, et al. Role of ultra-processed food in fat mass index from 6 to 11 years of age: a cohort study. Int J Epidemiol 2021; 50:256-65.
- 51. Cunha DB, Costa THM, Veiga GV, Pereira RA, Sichieri R. Ultra-processed food consumption and adiposity trajectories in a Brazilian cohort of adolescents: ELANA study. Nutr Diabetes 2018; 8:28.
- 52. Gadelha P, Arruda IKG, Coelho PBP, Queiroz PMA, Maio R, Diniz AD. Consumption of ultraprocessed foods, nutritional status, and dyslipidemia in schoolchildren: a cohort study. Eur J Clin Nutr 2019; 73:1194-9.
- 53. De Melo ISV, Costa C, dos Santos JVL, Santos AF, Florencio T, Bueno NB. Consumption of minimally processed food is inversely associated with excess weight in adolescents living in an underdeveloped city. PLoS One 2017; 12:e0188401.
- 54. Enes CC, Camargo CM, Justino MIC. Ultra-processed food consumption and obesity in adolescents. Rev Nutr (Online) 2019; 32:e180170.
- 55. D'Avila HF, Kirsten VR. Energy intake from ultra-processed foods among adolescents. Rev Paul Pediatr 2017; 35:54-60.
- Lacerda AT, Carmo AS, Sousa TM, Santos LC. Participation of ultra-processed foods in Brazilian school children's diet and associated factors. Rev Paul Pediatr 2020; 38:e2019034.
- 57. Rauber F, Campagnolo PDB, Hoffman DJ, Vitolo MR. Consumption of ultra-processed food products and its effects on children's lipid profiles: a longitudinal study. Nutr Metabol Cardiovasc Dis 2015; 25:116-22.
- Leffa PS, Hoffman DJ, Rauber F, Sangalli CN, Valmórbida JL, Vitolo MR. Longitudinal associations between ultra-processed foods and blood lipids in childhood. Br J Nutr 2020; 124:341-8.
- 59. Tavares LF, Fonseca SC, Rosa MLG, Yokoo EM. Relationship between ultra-processed foods and metabolic syndrome in adolescents from a Brazilian Family Doctor Program. Public Health Nutr 2012; 15:82-7.
- Edalati S, Bagherzadeh F, Jafarabadi MA, Ebrahimi-Mamaghani M. Higher ultra-processed food intake is associated with higher DNA damage in healthy adolescents. Br J Nutr 2021; 125:568-76.
- 61. Canella DS, Levy RB, Martins AP, Claro RM, Moubarac JC, Baraldi LG, et al. Ultra-processed food products and obesity in Brazilian households (2008-2009). PLoS One 2014; 9:e92752.
- 62. Srour B, Fezeu LK, Kesse-Guyot E, Alles B, Mejean C, Andrianasolo RM, et al. Ultra-processed food intake and risk of cardiovascular disease: prospective cohort study (NutriNet-Santé). BMJ 2019; 365:11451.

- 63. Srour B, Fezeu LK, Kesse-Guyot E, Alles B, Debras C, Druesne-Pecollo N, et al. Ultraprocessed food consumption and risk of type 2 diabetes among participants of the NutriNet-Santé prospective cohort. JAMA Intern Med 2020; 180:283-91.
- 64. Levy RB, Rauber F, Chang K, Louzada MLC, Monteiro CA, Millett C, et al. Association between ultra-processed food consumption and type 2 diabetes incidence: a prospective cohort study using UK Biobank. Clin Nutr 2021; 40:3608-14.
- 65. Fiolet T, Srour B, Sellem L, Kesse-Guyot E, Allès B, Méjean C, et al. Consumption of ultra-processed foods and cancer risk: results from NutriNet-Santé prospective cohort. BMJ 2018; 360:k322.
- 66. Queiroz SA, Sousa IM, Silva FRD, Lyra CD, Fayh APT. Nutritional and environmental risk factors for breast cancer: a case-control study. Sci Med (Porto Alegre, Online) 2018; 28:ID28723.
- 67. Trudeau K, Rousseau M-C, Parent M-E. Extent of food processing and risk of prostate cancer: The PROtEuS Study in Montreal, Canada. Nutrients 2020; 12:637.
- 68. Kim H, Hu EA, Rebholz CM. Ultra-processed food intake and mortality in the USA: results from the Third National Health and Nutrition Examination Survey (NHANES III, 1988-1994). Public Health Nutr 2019; 22:1777-85.
- 69. Rico-Campà A, Martínez-González MA, Alvarez-Alvarez I, Mendonça RD, de la Fuente-Arrillaga C, Gómez-Donoso C, et al. Association between consumption of ultra-processed foods and all cause mortality: SUN prospective cohort study. BMJ 2019; 365:11949.
- 70. Schnabel L, Kesse-Guyot E, Alles B, Touvier M, Srour B, Hercberg S, et al. Association between ultraprocessed food consumption and risk of mortality among middle-aged adults in France. JAMA Intern Med 2019; 179:490-8.
- 71. Blanco-Rojo R, Sandoval-Insausti H, Lopez-Garcia E, Graciani A, Ordovas JM, Banegas JR, et al. Consumption of ultra-processed foods and mortality: a national prospective cohort in Spain. Mayo Clin Proc 2019; 94:2178-88.
- 72. Zhong G-C, Gu H-T, Peng Y, Wang K, Wu Y-Q-L, Hu T-Y, et al. Association of ultra-processed food consumption with cardiovascular mortality in the US population: long-term results from a large prospective multicenter study. Int J Behav Nutr Phys Act 2021; 18:21.
- 73. Azeredo CM, Cortese M, Costa CD, Bjornevik K, Barros AJD, Barros FC, et al. Ultraprocessed food consumption during childhood and asthma in adolescence: data from the 2004 Pelotas birth cohort study. Pediatr Allergy Immunol 2020; 31:27-37.
- 74. Melo B, Rezende L, Machado P, Gouveia N, Levy R. Associations of ultra-processed food and drink products with asthma and wheezing among Brazilian adolescents. Pediatr Allergy Immunol 2018; 29:504-11.

- 75. Elias BC, Silva JB, Mais LA, Warkentin S, Konstantyner T, Solé D. Factors associated with asthma in brazilian adolescents: national adolescent school-based health survey (pense-2012). Rev Paul Pediatr 2019; 37:406-13.
- 76. Sandoval-Insausti H, Blanco-Rojo R, Graciani A, López-García E, Moreno-Franco B, Laclaustra M, et al. Ultra-processed food consumption and incident frailty: a prospective cohort study of older adults. J Gerontol A Biol Sci Med Sci 2020; 75:1126-33.
- 77. Vasseur P, Dugelay E, Benamouzig R, Savoye G, Lan A, Srour B, et al. Dietary patterns, ultra-processed food, and the risk of inflammatory bowel diseases in the NutriNet-Santé cohort. Inflamm Bowel Dis 2021; 27:65-73.
- 78. Schnabel L, Buscail C, Sabate J-M, Bouchoucha M, Kesse-Guyot E, Allès B, et al. Association between ultra-processed food consumption and functional gastrointestinal disorders: results from the French NutriNet-Santé cohort. Am J Gastroenterol 2018; 113:1217-28.
- 79. Adjibade M, Julia C, Allès B, Touvier M, Lemogne C, Srour B, et al. Prospective association between ultra-processed food consumption and incident depressive symptoms in the French NutriNet-Santé cohort. BMC Med 2019; 17:78.
- Gómez-Donoso C, Sánchez-Villegas A, Martínez-González MA, Gea A, Mendonça RD, Lahortiga-Ramos F, et al. Ultra-processed food consumption and the incidence of depression in a Mediterranean cohort: The Sun. Eur J Nutr 2020; 59:1093-103.
- Badanai NL, Zuccolotto DCC, Crivellenti LC, Sartorelli DS. Association of dietary patterns and degree of food processing with feelings of depression in pregnancy. Rev Bras Saúde Mater Infant 2019; 19:581-90.
- Steenhuis IH, Vermeer WM. Portion size: review and framework for interventions. Int J Behav Nutr Phys Act 2009; 6:58.
- Albar SA, Alwan NA, Evans CE, Cade JE. Is there an association between food portion size and BMI among British adolescents? Br J Nutr 2014; 112:841-51.
- Chassaing B, Koren O, Goodrich JK, Poole AC, Srinivasan S, Ley RE, et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 2015; 519:92-6.
- 85. Bhattacharyya S, Feferman L, Tobacman JK. Carrageenan inhibits insulin signaling through GRB10-mediated decrease in Tyr (P)-IRS1 and through inflammation-induced increase in Ser (P) 307-IRS1. J Biol Chem 2015; 290:10764-74.
- 86. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Carbon black, titanium dioxide, and talc. Lyon: International Agency for Research on Cancer; 2010. (IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 93).

- 87. Lerner A, Matthias T. Changes in intestinal tight junction permeability associated with industrial food additives explain the rising incidence of autoimmune disease. Autoimmun Rev 2015; 14:479-89.
- Miclotte L, Van de Wiele T. Food processing, gut microbiota and the globesity problem. Crit Rev Food Sci Nutr 2020; 60:1769-82.
- 89. Zhang Y, Huang M, Zhuang P, Jiao J, Chen X, Wang J, et al. Exposure to acrylamide and the risk of cardiovascular diseases in the National Health and Nutrition Examination Survey 2003-2006. Environ Int 2018; 117:154-63.
- DeJarnett N, Conklin DJ, Riggs DW, Myers JA, O'Toole TE, Hamzeh I, et al. Acrolein exposure is associated with increased cardiovascular disease risk. J Am Heart Assoc 2014; 3:e000934.
- Virk-Baker MK, Nagy TR, Barnes S, Groopman J. Dietary acrylamide and human cancer: a systematic review of literature. Nutr Cancer 2014; 66:774-90.
- 92. Lin C-Y, Lin Y-C, Kuo H-K, Hwang J-J, Lin J-L, Chen P-C, et al. Association among acrylamide, blood insulin, and insulin resistance in adults. Diabetes Care 2009; 32:2206-11.
- Feroe AG, Attanasio R, Scinicariello F. Acrolein metabolites, diabetes and insulin resistance. Environ Res 2016;148:1-6.
- Heindel JJ, Newbold R, Schug TT. Endocrine disruptors and obesity. Nat Rev Endocrinol 2015; 11:653-61.

- 95. Muncke J. Endocrine disrupting chemicals and other substances of concern in food contact materials: an updated review of exposure, effect and risk assessment. J Steroid Biochem Molec Biol 2011; 127:118-27.
- 96. Monteiro CA, Cannon GJ. The role of the transnational ultra-processed food industry in the pandemic of obesity and its associated diseases: problems and solutions. World Nutr 2019; 10:89-99.
- 97. Monteiro CA, Cannon G, Lawrence M, Louzada MLC, Machado PP. Ultra-processed foods, diet quality, and health using the NOVA classification system. Rome: Food and Agriculture Organization of the United Nations; 2019.
- 98. Pan American Health Organization. Ultraprocessed food and drink products in Latin America: sales, sources, nutrient profiles, and policy implications. Washington DC: Pan American Health Organization; 2019.
- 99. Swinburn BA, Kraak VI, Allender S, Atkins VJ, Baker PI, Bogard JR, et al. The global syndemic of obesity, undernutrition, and climate change: the Lancet Commission report. Lancet 2019; 393:791-846.
- 100.Food and Agriculture Organization. Foodbased dietary guidelines. http://www.fao.org/ nutrition/education/food-dietary-guidelines (accessed on Sep/2020).

Resumo

O objetivo deste trabalho foi realizar uma revisão de escopo da literatura acerca da associação entre o consumo de alimentos ultraprocessados e desfechos em saúde. A busca foi realizada nas bases PubMed, Web of Science e LILACS. Foram elegíveis os estudos que avaliaram a associação entre o consumo de alimentos ultraprocessados identificados com base na classificação NOVA e os desfechos em saúde. O processo de revisão resultou na seleção de 63 estudos, os quais foram analisados em termos de qualidade com base em ferramenta do Instituto Nacional de Saúde dos Estados Unidos. Os desfechos encontrados incluíram indicadores de obesidade, marcadores de risco metabólico, diabetes, doenças cardiovasculares, câncer, asma, depressão, fragilidade, doenças gastrointestinais e mortalidade. A evidência foi particularmente consistente para obesidade (ou indicadores relacionados a ela) em adultos, cuja associação com o consumo de ultraprocessados foi demonstrada, com efeito dose-resposta, em estudos transversais com amostras representativas de cinco países, em quatro grandes estudos de coorte e em um ensaio clínico randomizado. Grandes estudos de coorte também encontraram associação significativa entre o consumo de alimentos ultraprocessados e o risco de doenças cardiovasculares, diabetes e câncer, mesmo após ajuste para obesidade. Dois estudos de coorte demonstraram associação do consumo de alimentos ultraprocessados com depressão e quatro estudos de coorte com mortalidade por todas as causas. Esta revisão sumarizou os resultados de trabalhos que descreveram a associação entre o consumo de alimentos ultraprocessados e as diversas doencas crônicas não transmissíveis e seus fatores de risco, o que traz importantes implicações para a saúde pública.

Alimentos Industrializados; Consumo de Alimentos; Doença Crônica; Revisão

Resumen

El objetivo de este estudio fue realizar una revisión de alcance de la literatura sobre la asociación entre el consumo de alimentos ultraprocesados y los resultados de salud. La búsqueda se realizó en las bases de datos PubMed, Web of Science y LILACS. Fueron elegibles los estudios que evaluaron la asociación entre el consumo de alimentos ultraprocesados identificados según la clasificación NOVA y los resultados de salud. El proceso de revisión resultó en la selección de 63 estudios, cuya calidad se analizó con base en una herramienta delo Instituto Nacional de Salud de Estados Unidos Los resultados encontrados incluyeron indicadores de obesidad, marcadores de riesgo metabólico, diabetes, enfermedad cardiovascular, cáncer, asma, depresión, fragilidad, enfermedad gastrointestinal y mortalidad. La evidencia fue particularmente consistente para la obesidad (o indicadores relacionados con ella) en adultos, cuya asociación con el consumo de alimentos ultraprocesados se demostró, con un efecto dosis-respuesta, en estudios transversales con muestras representativas de cinco países, en cuatro grandes estudios de cohortes y en un ensayo clínico aleatorizado. Grandes estudios de cohortes también encontraron una asociación significativa entre el consumo de alimentos ultraprocesados y el riesgo de enfermedades cardiovasculares, diabetes y cáncer, incluso después de ajustar la obesidad. Dos estudios de cohortes mostraron una asociación entre el consumo de alimentos ultraprocesados y la depresión y cuatro estudios de cohortes con mortalidad por todas las causas. Esta revisión resumió los resultados de estudios que describieron la asociación entre el consumo de alimentos ultraprocesados y las diversas enfermedades crónicas no transmisibles y sus factores de riesgo, lo que tiene importantes implicaciones para la salud pública.

Alimentos Industrializados; Consumo de Alimentos; Enfermedad Crónica; Revisión

Submitted on 13/Nov/2020 Final version resubmitted on 17/Dec/2020 Approved on 23/Dec/2020