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 Abstract 
Objective: To evaluate the predictive power of different malaria case time-series models in the state of Amapá, Brazil, for 

the period 1997-2016. Methods: This is an ecological time series study with malaria cases recorded in the state of Amapá. Ten 
deterministic or stochastic statistical models were used for simulation and testing in 3, 6, and 12 month forecast horizons. 
Results: The initial test showed that the series is stationary. Deterministic models performed better than stochastic models. 
The ARIMA model showed absolute errors of less than 2% on the logarithmic scale and relative errors 3.4-5.8 times less than 
the null model. It was possible to predict future malaria cases 6 and 12 months in advance. Conclusion: The ARIMA model is 
recommended for predicting future scenarios and for earlier planning in state health services in the Amazon Region.

Keywords: Time Series Studies; Malaria; Decision Support Techniques; Epidemiological Monitoring; Forecasting.

*Study financed with resources from the ‘Acre Project – Health in the Western Amazon’, undertaken in partnership between 
the Acre State Health Department and Centro Universitário Saúde ABC (Agreement No. 007/2015). Gabriel Zorello Laporta 
received a Research Productivity Fellowship from the National Council for Scientific and Technological Development (CNPq), 
Ministry of Science, Technology, Innovation and Communication (MCTIC): Grant No.  307432/2019-0.

Correspondence: 
Marcos Venicius Malveira de Lima – Secretaria de Estado de Saúde do Acre, Rua Benjamim Constant, No. 907, Centro, Rio 
Branco, AC, Brazil. Postcode: 69914-220
E-mail: marcos.malveira@ac.gov.br



2 Epidemiol. Serv. Saude, Brasília, (30):e2020080, 2021

Evaluation of prediction models for malaria cases

Introduction

Malaria is a preventable and curable disease. 
However, in 2018, around 228 million cases were 
registered worldwide.1,2 Timely prevention of malaria 
cases allows for the allocation of adequate resources for 
controlling the disease and planning its elimination.3 
The initiative called ‘The Malaria Eradication Research 
Agenda’ analyzed different important aspects for the 
global elimination of malaria. Predictive modeling of 
cases was suggested as a tool for helping the Health 
Surveillance sector to plan infection control actions.4,5

Mathematical prediction models do not get 
future reality 100% right, especially with 
regard to new and complex etiological issues.

Monthly time series of new cases can be statistically 
adjusted in mathematical functions, using software.6-8 
Time series can be broken down according to three 
basic components: (i) the seasonal component, 
representing the cyclic pattern of the disease over time; 
(ii) the linear component, understood as an increasing 
or decreasing linear trend in the disease over time; and 
(iii) the stochastic component, regarding intervening 
factors affecting time series without a specific pattern.

Statistical time series models may be used for 
predicting future cases. Autoregressive integrated 
moving average (ARIMA) is a pioneer method for 
describing and predicting time series.9 The exponential 
smoothing model (ETS) represents an alternative 
to ARIMA.10 Exponential smoothing models for 
adjustment of complex seasonal patterns (TBATS 
and BATS) are methods deemed more efficient than 
ARIMA.11 Another alternative can be the model 
dividing the seasonal component into subcomponents 
(STLM).12,13

The models described above may be deterministic 
and have statistical structure to break down and adjust 
seasonal and linear components in time series, but they 
cannot estimate the stochastic component. Therefore, 
machine learning computational approaches have 
been proposed to quantify the effect of the third 
component: the structural model (StructTS), the 
neural network model (NNETAR), and machine 
learning models (ELM, MLP) are examples of such 
approaches.9,14-16 Models may be compared with a 

null model, defined by the constant value of the last 
observation.17

The premise of this article is that health surveillance 
can use predictive models of time series to predict the 
impact of malaria on a given Brazilian state. Malaria 
case incidence in the state of Amapá between 2015 and 
2018 was, on average, 17 cases per 1,000 inhabitants, 
one of the highest rates in the country in comparison 
with the rates found in the states of Acre (37/1,000 
inhabitants), Amazonas (17/1,000 inhabitants) and 
Roraima (19/1,000 inhabitants) in the same period. 
It is important to identify future time series of malaria 
cases for planning control measures. This study aims 
to evaluate the predictive power of different malaria 
case time-series models in the state of Amapá.

Methods

A statistical and computational approach 
was applied to the Amapá state health service, 
complementary to malaria control activities in Brazil 
as a whole, in accordance with the terms set by the 
World Health Organization (WHO) for eliminating 
this disease.2

This was an ecological time series study, using 
the number of malaria cases recorded in the state of 
Amapá in the period from 1997 to 2016. 

Amapá is one of Brazil’s most important endemic 
malaria regions (Figure 1). Its predominant climate, 
according to Köppen-Geiger's climatic classification, 
is tropical monsoon, that is, hot and very humid, 
with average rainfall indexes of 3,300mm annually. 
The largest portion of the state (73%; 97,000km²) 
is covered by native vegetation. In 2019, Amapá's 
population totaled 830,000 inhabitants, distributed 
over 16 municipalities.

Malaria data (autochthonous cases, identified 
through microscopy slides testing positive for 
Plasmodium – using the thick smear technique) 
were obtained from the following Health Ministry 
Health Surveillance Secretariat information systems: 
National Malaria Control Program Information 
System (SISMAL) for the period 1997-2003; and the 
Malaria Epidemiological Surveillance Information 
System (SIVEP-Malaria) for the period 2003-2016.

Three quantitative discrete variables were used with 
natural logarithm transformation:18 

a)	 number of monthly cases of malaria, from 
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January 1997 to December 2015 (this variable 
was used to adjust the parameters of the statistical 
models); 

b)	 Estimated values, from January to December 2016 
(predictor variable, used to test the predictive power 
of the statistical models); and 

c)	 number of monthly cases of malaria, from January 
to December 2016 (test variable, compared with 
predictor variable).

The statistical approach used was based on time series 
models. The first procedure involved the Dickey-Fuller 
test, increased to a 5% significance level, to test whether  
the time series was stationary or not. The stationary 
premise was assumed using statistical models, described 
later in this text. 

The time series encompassed 240 months, from 
January 1997 to December 2016, divided into two periods: 
training period, from January 1997 to December 2015; 
and test period, from January to December 2016. The 
number of monthly cases of malaria in the training 
period was used to adjust each one of the statistical 
models and estimate time component parameters 
(seasonality; linear trend; stochastic effect). The number 
of monthly cases of malaria in the test period was used 
for comparison with the values estimated by the statistical 
models. The test was conducted with three prediction time 
horizons: 12 months in advance ( January to December 
2016); six months in advance ( July to December 2016); 
and three months in advance (October to December 

2016). The result of each test was used to assess the 
predictive power of the models.

The statistical models used were: 
a)	 deterministic models (ARIMA;9 ETS;10 TBATS;11 

BATS;11 STLM12,13); 
b)	 stochastic models (StructTS;14 NNETAR;9 ELM;15 

MLP16); and
c)	 null model.17 
Three criteria were considered for assessment of the 

predictive power of the statistical models:
a)	 Mean Absolute Percentage Error (MAPE), where At 

is the real value and Ft is the prediction value. The 
values are added up for each point predicted in time, 
and the result is divided by the number of n points. 
Multiplying by 100% makes MAPE a percentage 
error, according to the following formula:

MAPE =
100% A

t
 - F

t∑| |n A
t
 

n

r=1

b)	 Relative MAPE scale, in which the null model MAPE 
is divided by the MAPE values of the remaining 
models. If the result of such division is less than 
or equal to 1, the model is classified as bad; if it 
is greater than 1 and less than or equal to 2, the 
model is classified as having low predictive power; 
and if it is greater than 2, the model presents reliable 
predictive power.

 

2015-2016

AC: Acre
AM: Amazonas

AP: Amapá
PA: Pará

RO: Rondônia
RR: Roraima

2017-2018

Figure 1 – Average incidence (per 1,000 inhabitants) of confirmed malaria cases in Brazilian states
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c)	 Uncertainty coefficient (Theil’s U). This is a 
relative accuracy measure, intended to eliminate 
statistical models with high deviations in relation 
to the average value. Values less than 1 mean the 
predictive power is reliable.17

A predictive power deemed acceptable was then defined 
as (i) lowest MAPE value, (ii) values greater than 2 for 
the null model MAPE scale, and (iii) values less than 1 
for Theil’s U. 

The analyses were conducted in the R computing 
environment, through a corrected and validated script 
that can be reproduced by Municipal and State Health 
Department surveillance staff in Brazil (Supplementary 
material).19

Results

The total number of malaria cases was 403,832, with 
an average of 1,771 cases per month and median of 1,518 
cases/month, with 1,021 cases in the first quartile and 
2,079 cases in the third quartile - standard deviation (SD) 
= 918 cases. The increased Dickey-Fuller value showed 

that the time series is stationary (test value = -5.352; 
p-value <0.01). The minimum number of cases was 487 
(May 2014), while the maximum was 5,944 (October 
2000), consistent with the seasonal nature of malaria in 
the state (Table 1).

Table 2 presents the performance of the models 
according to the criteria for assessing predictive power 
and the three selected prediction time horizons. In the 12 
and six month time horizons, all deterministic models 
(ETS, ARIMA, STLM, BATS and TBATS) showed reliable 
predictive power. However, none of the stochastic models 
showed reliability in predicting future cases of malaria 
for those time horizons. 

The three-month time horizon surprisingly showed 
itself to be challenging for all the models. Finally, no 
model was deemed reliable for predicting malaria cases 
three months in advance (Figure 2).

Discussion

Deterministic models showed themselves to be 
reliable for predicting the monthly number of cases 

Table 1– Number of confirmed malaria cases per month and year, Amapá, January 1997 - December 2016

Year January February March April May June July August September October November December Total
1997 1,997 1,520 1,023 1,096 1,030 1,364 2,108 2,708 3,506 3,592 2,814 2,110 24,868

1998 1,633 1,863 1,566 1,524 1,773 1,899 2,005 2,534 3,001 1,795 1,929 1,047 22,569

1999 1,077 1,124 994 661 809 801 1,594 3,472 4,435 4,963 5,570 3,146 28,646

2000 2,473 2,731 1,632 1,269 1,563 1,714 2,377 4,336 3,767 5,944 4,574 2,898 35,278

2001 2,861 2,510 2,019 1,513 1,638 1,760 1,920 2,496 2,466 2,588 1,731 985 24,487

2002 1,422 1,250 849 671 593 649 971 1,953 2,330 2,174 2,144 1,251 16,257

2003 963 854 704 690 755 953 1,622 1,601 2,118 2,456 2,258 1,677 16,651

2004 1,949 1,972 1,453 987 1,014 1,126 1,408 1,954 1,848 2,731 2,387 1,841 20,670

2005 1,872 2,524 2,214 1,331 1,517 1,546 2,252 3,133 3,416 3,615 2,681 1,958 28,059

2006 2,505 1,500 1,231 1,101 1,582 1,637 2,403 3,393 3,431 4,371 3,750 2,386 29,290

2007 2,527 1,743 1,560 1,314 1,254 1,241 1,801 2,147 2,036 3,119 1,914 1,319 21,975

2008 1,217 957 823 770 872 745 960 1,121 1,721 2,099 2,144 1,702 15,131

2009 1,558 1,133 955 860 1,049 1,036 1,096 1,501 1,816 1,783 1,541 1,176 15,504

2010 1,466 1,143 994 730 892 970 1,384 1,390 1,292 1,553 2,072 1,502 15,388

2011 1,119 872 830 723 923 941 1,348 2,254 2,324 2,639 3,115 1,910 18,998

2012 1,685 1,257 1,040 693 863 917 1,272 1,344 1,234 1,619 1,925 1,432 15,281

2013 1,675 1,401 939 842 710 717 918 1,272 1,445 2,121 2,004 1,250 15,294

2014 1,057 806 599 516 487 516 646 1,201 1,844 2,163 2,199 1,521 13,555

2015 1,504 1,097 767 597 558 635 971 1,234 1,705 1,906 1,606 1,078 13,658

2016 1,138 1,040 667 532 580 673 962 1,296 1,585 1,554 1,321 925 12,273
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of malaria in the next 12 or six months in the state 
of Amapá. This result may be interpreted as follows: 
the time series being studied has characteristics that 
enable better performance by deterministic models. 
This is because time series with (i) a strong seasonal 
component, (ii) relatively low linear trend (for example, 
temporal stationarity) and (iii) low or null stochastic 
effect are satisfactorily adjusted by deterministic models 
such as ARIMA. Theoretically, statistical models able to 
detect stochastic effects can present better performance, 
in comparison to deterministic models, in the case of 
time series with (i) lack of seasonality, (ii) high linear 
trend, and (iii) stochastic effects.20 However, none 
of the assessed models presented reliable results for 
predicting the number of monthly cases of malaria in 
the three-month time horizon. Prediction of malaria 
in short future periods also proved to be unsatisfactory 
in another study, in which deterministic models were 
applied in districts of Sri Lanka between 1972 and 
2005.18 That study discouraged using statistical models 
for predicting malaria cases in near future periods of 
one month in advance, notwithstanding the period of 
the study in Sri Lanka being shorter than the shortest 
period in our study.

A limitation of the present study is the impossibility 
of predicting malaria cases for short periods in 

advance, such as 3 months. Another limitation is 
the fact that, when using the state of Amapá as 
unit of analysis, local scale information is lost. 
The advantages of this approach, however, are the 
possibility of predicting malaria cases 12 or six months 
in advance and using deterministic statistical models. 
As these models are easier for health service managers 
to understand, this makes their implementation in 
health services more viable.21 

The potential use of time series techniques in 
epidemiological studies, disease surveillance and 
malaria outbreak prediction has been explored in 
different studies.18,22-24 For example, a study with 
similar design, conducted in the north of Thailand 
from 1999 to 2004, found deterministic models 
enabling future prediction of malaria and dengue 
fever one to four months in advance, to the extent 
its authors suggest using such models for allocating 
resources in controlling and preventing these 
diseases.22 Another study with deterministic models, 
conducted in Sudan, between 2009 and 2013, 
showed that the predictive power of the models used 
varied according to each state (of that country).23 
Deterministic models used for predicting malaria in 
Afghanistan, between 2005 and 2015, led to reliable 
predictions for 12 to four months in advance.24

Table 2 – Comparison of performance of statistical models according to model assessment criteria and 
prediction time of each time horizon for monthly malaria cases in Amapá

Prediction time - 12-month time horizon Prediction time - 6-month time horizon Prediction time - 3-month time horizon

Models MAPEa
Relative 

MAPEa 
scale

Theil’s U Models MAPEa
Relative 

MAPEa 
scale

Theil’s U Models MAPEa
Relative 

MAPEa 
scale

Theil’s U

ETS 1.25 3.76 0.40 ETS 0.76 11.28 0.29 NNETAR 2.47 1.44 0.64

ARIMA 1.39 3.38 0.47 ARIMA 1.47 5.83 0.56 ETS 2.87 1.24 0.82

TBATS 1.57 2.99 0.52 TBATS 1.60 5.36 0.58 TBATS 3.28 1.09 0.91

ELM 1.64 2.87 0.50 STLM 1.99 4.31 0.73 Null 3.56 1.00 1.45

STLM 1.63 2.88 0.57 NNETAR 2.16 3.97 0.76 STLM 3.96 0.90 1.17

MLP 1.66 2.83 0.55 BATS 2.24 3.83 0.93 ARIMA 4.36 0.82 1.27

BATS 1.81 2.60 0.68 StructTS 3.57 2.40 1.29 BATS 4.67 0.76 1.34

NNETAR 3.29 1.43 1.01 MLP 5.24 1.64 1.96 MLP 5.74 0.62 2.08

Nulo 4.70 1.00 1.63 ELM 6.97 1.23 2.53 ELM 5.82 0.61 2.20

StructTS 10.15 0.46 3.75 Null 8.57 1.00 2.88 StructTS 10.44 0.34 3.43
a) MAPE: mean absolute percentage error.
Notes:
ARIMA, ETS, TBATS, BATS and STLM: deterministic models.
StructTS, NNETAR, ELM and MLP: stochastic models.
Null: null model.
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Considering that, among deterministic models, 
ARIMA is the most widely applied in the literature and 
has predictive characteristics for diseases affected by 
seasonality,22-26 we recommend its implementation as a 
protocol for predicting monthly malaria cases for long-
term horizons - 12 or six months – on a state-wide scale 
in the Brazilian Amazon state of Amapá.
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Figure 2 – Predictive power of the statistical models considering the comparison between the test variable and 
the estimated values for each model, according to three time horizons



7 Epidemiol. Serv. Saude, Brasília, (30):e2020080, 2021

Marcos Venicius Malveira de Lima and Gabriel Zorello Laporta

References

1.	 World Health Organization - WHO. World mMalaria 
rReport 2019 [Internet]. Genebra: World Health 
Organization; 2019 [cited 2020 Sep 28]. 232 p. Available 
from: https://www.who.int/publications/i/item/world-
malaria-report-2019

2.	 Organização Mundial da Saúde - OMS. Estratégia 
técnica mundial para o paludismo 2016-2030 
[Internet]. Geneva: Organização Mundial da 
Saúde; 2015 [citado 2020 set 28]. 30 p. Disponível 
em: https://apps.who.int/iris/bitstream/
handle/10665/176712/9789248564994_por.
pdf?sequence=6

3.	 Gomez-Elipe A, Otero A, Van Herp M, Aguirre-Jaime A. 
Forecasting malaria incidence based on monthly case 
reports and environmental factors in Karuzi, Burundi, 
1997-2003. Malar J [Internet]. 2007 Sep [cited 2020 Sep 
28];6(129):1-10. doi:10.1186/1475-2875-6-129Available 
from: https://doi.org/10.1186/1475-2875-6-129 https://
doi.org/10.1186/1475-2875-6-129

4.	 The malERA Consultative Group on Modeling. A 
research agenda for malaria eradication: mModeling. 
PLoS Med [Internet]. 2011 Jan [cited 2020 Sep 28];8(1). 
doi:10.1371/journal.pmed.1000403Available from: 
https://doi.org/10.1371/journal.pmed.1000403 

5.	 The malERA Consultative Group on Modeling. A 
research agenda for malaria eradication: mMonitoring, 
evaluation, and surveillance. PLoS Med [Internet]. 
2011 Jan [cited 2020 Sep 28];8(1). doi:10.1371/journal.
pmed.1000400Available from: https://doi.org/10.1371/
journal.pmed.1000400 

6.	 Hyndman RJ, Khandakar Y. Automatic time series 
forecasting: tThe forecast package for R. J Stat Softw 
[Internet]. 2008 Jul [cited 2020 Sep 28];27(3):C3-C3. 
doi:10.18637/jss.v027.i03Available from: http://dx.doi.
org/10.18637/jss.v027.i03 

7.	 Hyndman JR. Rob, Anne KB, Ralph SD, Simone G. 
A state space framework for automatic forecasting 
using exponential smoothing methods. Int J Forecast 
[Internet]. 2002 Jul-Sep [cited 2020 Sep 28];18(3):439-
54. Available from: https://doi.org/10.1016/S0169-
2070(01)00110-8 

8.	 de Livera AM, Hyndman RJ, Snyder RD. Forecasting time 
series with complex seasonal patterns using exponential 
smoothing. J Am Stat Assoc [Internet]. 2011 Jan [cited 
2020 Sep 28];106(496):1513-27. doi:10.1198/jasa.2011.
tm09771Available from: https://doi.org/10.1198/
jasa.2011.tm09771 

9.	 Dokumentov A, Hyndman RJ. STR : a seasonal-trend 
decomposition procedure based on regression. Monash 
Econometrics and Business Statistics Working Papers 
[Internet]. 2015 [cited 2020 Sep 28];(13):. Available 
from: https://robjhyndman.com/publications/str/23.

10.	 Cleveland R, Cleveland W, McRae J, Terpenning I. STL: a 
seasonal-trend decomposition procedure based on Loess 
(with discussion). J Off Stat [Internet]. 1990;6(1):3-73. 
Available from: https://www.wessa.net/download/stl.pdf 

11.	 Durbin J, Koopman SJ. Time series analysis by state 
space methods. 1a. Oxford University Press; 2013. 
doi:10.1093/acprof:oso/9780199641178.001.0001

12.	 Crone SF, Kourentzes N. Feature selection for time series 
prediction - A combined filter and wrapper approach for 
neural networks. Neurocomputing [Internet]. 2010 Jun 
[cited 2020 Sep 28];73(10-12):1923-36. doi:10.1016/j.
neucom.2010.01.017Available from: https://doi.
org/10.1016/j.neucom.2010.01.017 

13.	 Kourentzes N, Barrow DK, Crone SF. Neural 
network ensemble operators for time series 
forecasting. Expert Syst Appl [Internet]. 2014 Jul 
[cited 2020 Seo 28];41(9):4235-44. doi:10.1016/j.
eswa.2013.12.011Available from: https://doi.
org/10.1016/j.eswa.2013.12.011 

14.	 Hyndman RJ, Athanasopoulos G. Forecasting: principles 
and practice. 2nd ed. [S.l.]: OTexts; 2018.

15.	 Morettin PA, Toloi CM. Análise de séries temporais: 
modelos lineares univariados. 3rd ed.3a. São Paulo: 
Blucher; 2018.

16.	 Antunes JLF, Cardoso MRA. Uso da análise de 
séries temporais em estudos epidemiológicos. 
Epidemiol Serv Saúde [Internet]. 2015 jul-set [cited 
2020 set 28];24(3):565-76. doi:10.5123/S1679-
49742015000300024Disponível em: http://dx.doi.
org/10.5123/S1679-49742015000300024

17.	 Helfenstein U. Box--jenkins modelling of some viral 
infectious diseases. Stat Med [Internet]. 1986 Jan-
Feb [cited 2020 Sep 28];5(1):37-47. doi:10.1002/
sim.4780050107Available from: https://doi.org/10.1002/
sim.4780050107 

18.	 Briët OJT, Vounatsou P, Gunawardena DM, Galappaththy 
GNL, Amerasinghe PH. Models for short term malaria 
prediction in Sri Lanka. Malar J [Internet]. 2008 May 
[cited 2020 Sep 28];7(76). doi:10.1186/1475-2875-
7-76Available from: https://github.com/MVMLima/
artigo_RESS_malaria



8 Epidemiol. Serv. Saude, Brasília, (30):e2020080, 2021

Evaluation of prediction models for malaria cases

19.	 Lima MVM. Protocolo de programação em ambiente R
e banco de dados disponíveis em repositório de acesso 
público [Internet]. [S.l.]: GitHub; 2020 [citado 2020 
ago 5]. Disponível em: https://github.com/MVMLima/
artigo_RESS_malaria

20.	 Baquero OS, Santana LMR, Chiaravalloti-Neto F. 
Dengue forecasting in São Paulo city with generalized 
additive models, artificial neural networks and seasonal
autoregressive integrated moving average models. PLoS 
One [Internet]. 2018 Apr [cited 2020 Sep 28];13(4):1-
12. doi:10.1371/journal.pone.0195065Available from:
https://doi.org/10.1371/journal.pone.0195065

21.	 World Health Organization - (WHO). Malaria epidemics:
forecasting, prevention, early detection and control. 
Lesyin: World Health Organization; 2004 [cited 2020 
Sep 28]. 48 p. Available from: https://apps.who.int/iris/
handle/10665/70073.

22.	 Sriwattanapongse W, Khanabsakdi S. Modeling and 
forecasting malaria and dengue hemorrhagic fever 
incidence and prevalence in Nothern Thailand. J Math
Syst Sci [Internet]. 2011 [cited 2020 Sep 28];1(1):52-
59. Available from: https://www.semanticscholar.
org/paper/Modeling-and-Forecasting-Malaria-and-
Dengue-Fever-Sriwattanapongse-Khanabsakdi/
b5de80ebedda6ce67bd6e5cdfee666ea2270e98d

23.	 Hussien HH, Eissa FH, Awadalla KE. Statistical methods
for predicting malaria incidences using data from 
Sudan. Malar Res Treat [Internet].  2017 [cited 
2020 Sep 28]:4205957. Available from: https://doi.
org/10.1155/2017/4205957 Published online 2017. 
doi:10.1155/2017/4205957

24.	 Anwar MY, Lewnard JA, Parikh S, Pitzer VE. Time series 
analysis of malaria in Afghanistan: using ARIMA 
models to predict future trends in incidence. Malar J 
[Internet]. 2016 Nov [cited 2020 Sep 28];15(1):566. 
doi:10.1186/s12936-016-1602-1Available from: https://
doi.org/10.1186/s12936-016-1602-1

25.	 Tohidinik HR, Mohebali M, Mansournia MA, Kalhori 
SRN, Akbarpour MA, Yazdani K. Forecasting zoonotic 
cutaneous leishmaniasis using meteorological factors 
in eastern fars province, Iran: aA sarima analysis. Trop 
Med Int Health [Internet]. 2018 Aug [cited 2020 Sep 
28];23(8):860-9. doi:10.1111/tmi.13079Available from:
https://doi.org/10.1111/tmi.13079

26.	 Padilha MAO, Melo JDO, Romano G, Lima MVM, Alonso 
WJ, Sallum MAM, et al. Comparison of malaria incidence 
rates and socioeconomic environmental factors between 
the states of Acre and Rondônia: a spatio temporal 
modelling study. Malar J [Internet]. 2019 Sep [cited 2020 
Sep 28];18(306). Available from: https://doi.org/10.1186/
s12936-019-2938-0

Received on 09/04/2020
Approved on 02/09/2020

Associate editor: Lúcia Rolim Santana de Freitas -  orcid.org/0000-0003-0080-2858




